• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhou Huoyan, Zhao Xiaodi. Potential suitable area and natural driving force of Artemisia desertorum shrub in Ulanbuh Desert of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(2): 96-107. DOI: 10.12171/j.1000-1522.20220160
Citation: Zhou Huoyan, Zhao Xiaodi. Potential suitable area and natural driving force of Artemisia desertorum shrub in Ulanbuh Desert of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(2): 96-107. DOI: 10.12171/j.1000-1522.20220160

Potential suitable area and natural driving force of Artemisia desertorum shrub in Ulanbuh Desert of northwestern China

More Information
  • Received Date: April 21, 2022
  • Revised Date: October 17, 2022
  • Available Online: January 16, 2023
  • Published Date: February 24, 2023
  •   Objective  By studying the changes of geographical distribution of typical desert species and their driving factors, we can provide scientific basis for the restoration of desert vegetation.
      Method  In this paper, Artemisia desertorum, the dominant plant in Ulanbuh Desert of northwestern China, was taken as the research object. The geographical distribution data of A. desertorum were collected and sorted out through field investigation and remote sensing image recognition. Combined with 29 environmental variables, the optimal species distribution model was obtained, and the optimal model was adopted. Based on the Noresm1-M climate model, the potential distribution of A. desertorum in different periods under two emission scenarios was predicted, and the threshold range of major environmental factors for its suitable distribution was analyzed, and the impact of future climate change on the potential geographical distribution of A. desertorum shrub was predicted, and it was divided into suitable distribution areas.
      Result  The maximum entropy (MaxEnt) model was the best one to simulate the geographical distribution of A. desertorum shrub. The annual average temperature was the determining factor of the geographical distribution of A. desertorum shrub. The suitable range of annual average temperature was 7.4−9.0 ℃, and the threshold was 8.4 ℃. The main natural driving factors were slope and average temperature in the wettest season, and temperature was more important than rainfall. In the 2050s, under RCP2.6 emission mode, the centroid of A. desertorum shrub will migrate 4.55 km to the southwest, and with the increase of CO2 emission intensity, it will migrate 1.21 km northward. By the 2070s, the centroid of A. desertorum shrub will migrate 2.60 km to northeast under the RCP2.6 emission mode. With the increase of CO2 emission intensity, it will turn to migrate 0.83 km northward. With the passage of time and the warming of climate, the suitable habitat of A. desertorum was continuously fragmented and the suitable habitat area was gradually reduced, and more suitable habitat was degraded to low or unsuitable habitat.
      Conclusion  With the shrink of A. desertorum’s most suitable area, the impact of climate change in Ulanbuh Desert on the distribution area of A. desertorum shrub should be closely observed, and the corresponding ecological restoration research should be carried out. At present, the high and moderate suitable areas should be actively planted with A. desertorum, and the unsuitable areas should actively develop other local vegetation under the premise of economic and technological feasibility, or improve their suitability by improving the sandy geology. Under the trend of future climate warming, ecological monitoring should be strengthened, and measures should be taken to actively respond to the changes in the distribution area, so as to improve the regional vegetation coverage and form a virtuous cycle, and finally achieve the goal of restoring desert vegetation, improving the stability of the ecosystem and giving full play to its ecological functions.
  • [1]
    吕妍, 王让会, 蔡子颖. 我国干旱半干旱地区气候变化及其影响[J]. 干旱区资源与环境, 2009, 23(11): 65−71. doi: 10.13448/j.cnki.jalre.2009.11.003

    Lü Y, Wang R H, Cai Z Y. Climatic change and influence in arid and semi-arid area of China[J]. Journal of Arid Land Resources and Environment, 2009, 23(11): 65−71. doi: 10.13448/j.cnki.jalre.2009.11.003
    [2]
    孙康慧, 曾晓东, 李芳. 1980 ~ 2014年中国生态脆弱区气候变化特征分析[J]. 气候与环境研究, 2019, 24(4): 456−468.

    Sun K H, Zeng X D, Li F. Climate change characteristics in ecological fragile zones in China during 1980−2014[J]. Climatic and Environmental Research, 2019, 24(4): 456−468.
    [3]
    杨力生. 阿拉善盟沙漠治理的几点意见[J]. 中国沙漠, 1982, 3(4): 43−45.

    Yang L S. Some opinions on desert governance in Alxa League[J]. Journal of Desert Research, 1982, 3(4): 43−45.
    [4]
    崔骁勇, 杜占池, 王艳芬. 内蒙古半干旱草原区沙地植物群落光合特征的动态研究[J]. 植物生态学报, 2000, 24(5): 541−546. doi: 10.3321/j.issn:1005-264X.2000.05.006

    Cui X Y, Du Z C, Wang Y F. Photosynthetic characteristic of a semi-arid sandy grassland community in Inner Mongolia[J]. Acta Phytoecologica Sinica, 2000, 24(5): 541−546. doi: 10.3321/j.issn:1005-264X.2000.05.006
    [5]
    Li B. The vegetation of the Xilin River Basin and its utilization[J]. Research on Grassland Ecosystem, 1988, 3(3): 84−183.
    [6]
    赵明, 王文科, 王周锋, 等. 半干旱区沙地沙蒿生物量及根系分布特征研究[J]. 干旱区地理, 2018, 41(4): 110−116. doi: 10.12118/j.issn.1000-6060.2018.04.14

    Zhao M, Wang W K, Wang Z F, et al. Biomass of Artemisia ordosica in sand land and its root system distribution characteristics in the semiarid regions[J]. Arid Land Geography, 2018, 41(4): 110−116. doi: 10.12118/j.issn.1000-6060.2018.04.14
    [7]
    赵岩, 周文渊, 孙保平, 等. 毛乌素沙地三种荒漠灌木根系分布特征与土壤水分研究[J]. 水土保持研究, 2010(4): 133−137.

    Zhao Y, Zhou W Y, Sun B P, et al. Root distribution of three desert shrubs and soil misture in Mu Us Sand Land[J]. Research of Soil and Water Conservation, 2010(4): 133−137.
    [8]
    贺学礼, 王银银, 赵丽莉, 等. 荒漠沙蒿根围AM真菌和DSE的空间分布[J]. 生态学报, 2011, 31(3): 812−818.

    He X L, Wang Y Y, Zhao L L, et al. Spatial distribution of arbuscular mycorrhizal fungi and dark septate endophytes in the rhizosphere of Artemisia sphaerocephala from Inner Mongolia desert[J]. Acta Ecologica Sinica, 2011, 31(3): 812−818.
    [9]
    张义凡, 陈林, 李学斌, 等. 不同荒漠草原植被根际与非根际土壤养分及碳库管理指数特征[J]. 草业学报, 2017, 26(1): 27−37. doi: 10.11686/cyxb2017077

    Zhang Y F, Chen L, Li X B, et al. Soil nutrients and carbon management index in the rhizosphere versus non-rhizosphere area of different plant species in desert grassland[J]. Acta Prataculturae Sinica, 2017, 26(1): 27−37. doi: 10.11686/cyxb2017077
    [10]
    姚艳芳, 杨芹, 郭海岩, 等. 危害沙蒿的两种蛀干害虫调查[J]. 内蒙古林业调查设计, 2009, 32(4): 103−104. doi: 10.3969/j.issn.1006-6993.2009.04.041

    Yao Y F, Yang Q, Guo H Y, et al. Investigation on two dry-eating pests of Artemisia sphaerocephala[J]. Inner Mongolia Forestry Investigation and Design, 2009, 32(4): 103−104. doi: 10.3969/j.issn.1006-6993.2009.04.041
    [11]
    王建伟, 李月华, 韩卫东, 等. 沙蒿尖翅吉丁生物学特性的研究[J]. 应用昆虫学报, 2011, 48(1): 141−146. doi: 10.7679/j.issn.2095-1353.2011.027

    Wang J W, Li Y H, Han W D, et al. Biological characteristics of Sphenoptera sp. on Artemisia ordosoca[J]. Chinese Journal of Applied Entomology, 2011, 48(1): 141−146. doi: 10.7679/j.issn.2095-1353.2011.027
    [12]
    王杰, 李岳诚, 张大治. 基于标记重捕法的沙蒿金叶甲种群扩散研究[J]. 环境昆虫学报, 2016, 38(5): 912−917.

    Wang J, Li Y C, Zhang D Z. Population dispersion of Chrysolina aeruginosa based on mark-recapture method[J]. Journal of Environmental Entomology, 2016, 38(5): 912−917.
    [13]
    刘华民, 朴顺姬, 王立新, 等. 不同演替阶段褐沙蒿种群特征研究[J]. 生态学杂志, 2005, 24(5): 497−502.

    Liu H M, Piao S J, Wang L X, et al. Population characteristics in tramongolica at different successional stages[J ]. Chinese Journal of Ecology, 2005, 24(5): 497−502.
    [14]
    刘增文, 冯顺煜, 段而军, 等. 陕北半干旱风沙区人工林下植物群落数量特征研究[J]. 西北农林科技大学学报(自然科学版), 2008, 36(12): 129−134. doi: 10.13207/j.cnki.jnwafu.2008.12.002

    Liu Z W, Feng S Y, Duan E J, et al. Quanitity characteristics of plant community under tree-layers of planted forests in semi-arid windy area of north Shaanxi Province[J]. Journal of Northwest A&F University (Natural Science Edition), 2008, 36(12): 129−134. doi: 10.13207/j.cnki.jnwafu.2008.12.002
    [15]
    卢小妹, 唐进年, 陈英, 等. 石羊河中下游沙蒿种群年龄结构与动态分析[J]. 中国农学通报, 2015, 31(1): 53−57. doi: 10.11924/j.issn.1000-6850.2014-1079

    Lu X M, Tang J N, Chen Y, et al. Population age structure and dynamic analysis of Artemisia arenaria in middle and lower reaches of Shiyang River area[J]. Chinese Agricultural Science Bulletin, 2015, 31(1): 53−57. doi: 10.11924/j.issn.1000-6850.2014-1079
    [16]
    陶冶, 张元明. 准噶尔沙蒿群落主要物种间的关联性分析[J]. 中国沙漠, 2012, 32(5): 1308−1314.

    Tao Y, Zhang Y M. Interspecific associations among main species in Artemisia songarica communites in Junggar Basin[J]. Journal of Desert Research, 2012, 32(5): 1308−1314.
    [17]
    张德魁, 王继和, 马全林, 等. 腾格里沙漠南缘油蒿与沙蒿种群分布格局[J]. 甘肃科技, 2008, 24(3): 127−130. doi: 10.3969/j.issn.1000-0952.2008.03.052

    Zhang D K, Wang J H, Ma Q L, et al. Population distribution pattern of Artemisia ordosica and Artemisia sphaerocephala in the southern margin of Tengger Desert[J]. Gansu Science and Technology, 2008, 24(3): 127−130. doi: 10.3969/j.issn.1000-0952.2008.03.052
    [18]
    张莹花, 刘世增, 刘虎俊, 等. 石羊河中游河岸沙蒿种群的空间格局和关联性分析[J]. 干旱区研究, 2013, 30(2): 256−263. doi: 10.13866/j.azr.2013.02.014

    Zhang Y H, Liu S Z, Liu H J, et al. Spatial distribution pattern and relevance of Artemisia arenaria population along the river course of middle reaches of the Shiyang River[J]. Arid Zone Research, 2013, 30(2): 256−263. doi: 10.13866/j.azr.2013.02.014
    [19]
    靳虎甲, 马全林, 张德魁, 等. 乌兰布和沙漠典型灌木群落结构及数量特征[J]. 西北植物学报, 2012, 32(3): 579−588. doi: 10.3969/j.issn.1000-4025.2012.03.022

    Jin H J, Ma Q L, Zhang D K, et al. Analysis on typical shrub plant community characteristics and quantitative characteristics in Ulanbuh Desert[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(3): 579−588. doi: 10.3969/j.issn.1000-4025.2012.03.022
    [20]
    辛智鸣, 黄雅茹, 章尧想, 等. 乌兰布和沙漠白刺与沙蒿群落多样性及其对降水的响应[J]. 河南农业科学, 2015, 44(1): 117−120.

    Xin Z M, Huang Y R, Zhang Y X, et al. Community diversity of Nitraria tangutorum Bobr and Artemisia sphaerocephala in Ulanbuh Desert and its response to precipitation[J]. Journal of Henan Agricultural Sciences, 2015, 44(1): 117−120.
    [21]
    孙得祥. 民勤荒漠区白刺群落和沙蒿群落的自然更新能力[J]. 中国农学通报, 2010, 26(11): 346−349.

    Sun D X. Research on natural reproduction ability of Nitaria tangutorum community and Artemisia arenaria community in Minqin Desert area[J]. Chinese Agriculture Science Bulletin, 2010, 26(11): 346−349.
    [22]
    常兆丰, 李易珺, 张剑挥, 等. 民勤荒漠区4种植物的防风固沙功能对比分析[J]. 草业科学, 2012, 29(3): 358−363.

    Chang Z F, Li Y J, Zhang J H, et al. Comparison on functions of wind break and sand fixation four plant species in Minqin Desert[J]. Pratacultural Science, 2012, 29(3): 358−363.
    [23]
    马全林, 卢琦, 张德魁, 等. 沙蒿与油蒿灌丛的防风阻沙作用[J]. 生态学杂志, 2012, 31(7): 1639−1645. doi: 10.13292/j.1000-4890.2012.0307

    Ma Q L, Lu Q, Zhang D K, et al. Wind prevention and sand resistance effects of Artemisia sphaerocephala and A. ordosica[J]. Chinese Journal of Ecology, 2012, 31(7): 1639−1645. doi: 10.13292/j.1000-4890.2012.0307
    [24]
    魏宝, 丁国栋, 吴斌, 等. 不同盖度沙蒿群丛防风作用研究[J]. 干旱区研究, 2012, 29(2): 213−217. doi: 10.13866/j.azr.2012.02.005

    Wei B, Ding G D, Wu B, et al. Study on windbreak effect of Artemisia ordosica community over different vegetation coverage[J]. Arid Zone Research, 2012, 29(2): 213−217. doi: 10.13866/j.azr.2012.02.005
    [25]
    赵晓彬, 苏世平, 符亚儒. 榆林沙区低效防风固沙林更新改造技术研究[J]. 西北林学院学报, 2010, 25(1): 104−106.

    Zhao X B, Su S P, Fu Y R. Updating and transformation technology of inefficient wind-breaking and sand-fixing forests in Yulin Sandy Land[J]. Journal of Northwest Forestry University, 2010, 25(1): 104−106.
    [26]
    刘冠志, 李青丰, 贺威, 等. 毛乌素沙地3种主要植物群落的阻沙效益[J]. 水土保持通报, 2016, 36(2): 234−238.

    Liu G Z, Li Q F, He W, et al. Efficiency of sand resistance of three main plant communities in Mu Us Sandland[J]. Bulletin of Soil and Water Conservation, 2016, 36(2): 234−238.
    [27]
    许仲林, 彭焕华, 彭守璋. 物种分布模型的发展及评价方法[J]. 生态学报, 2015, 35(2): 557−567.

    Xu Z L, Peng H H, Peng S Z. The development and evaluation of species distribution models[J]. Acta Ecologica Sinica, 2015, 35(2): 557−567.
    [28]
    郑维艳, 曹坤芳. 未来气候变化对四种木姜子地理分布的影响[J]. 广西植物, 2020, 40(11): 1584−1594. doi: 10.11931/guihaia.gxzw201904020

    Zheng W Y, Cao K F. Impact of future climate change on potential geographical distribution of four Litsea species in China[J]. Guihaia, 2020, 40(11): 1584−1594. doi: 10.11931/guihaia.gxzw201904020
    [29]
    李垚, 张兴旺, 方炎明. 气候变暖对中国栓皮栎地理分布格局影响的预测[J]. 应用生态学报, 2014, 25(12): 3381−3389.

    Li Y, Zhang X W, Fang Y M. Predicting the impact of global warming on the geographica distribution pattern of Quercus variablilis in China[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3381−3389.
    [30]
    马松梅, 魏博, 李晓辰, 等. 气候变化对梭梭植物适宜分布的影响[J]. 生态学杂志, 2017, 36(5): 1243−1250.

    Ma S M, Wei B, Li X C, et al. The impacts of climate change on the potential distribution of Haloxylon ammodendron[J]. Chinese Journal of Ecology, 2017, 36(5): 1243−1250.
    [31]
    Verrelst J, Geerling G W, Sykora K V, et al. Mapping of aggregated floodplain plant communities using image fusion of CASI and LiDAR data[J]. International Journal of Applied Earth Observations & Geoinformation, 2009, 11(1): 83−94.
    [32]
    董光荣, 邹桂香, 李长治, 等. 巴盟河套西部防沙林带防风阻沙效益的初步观测: 以磴口县坝楞公社为例[J]. 中国沙漠, 1983(1): 13−23.

    Dong G R, Zou G X, Li C Z, et al. Preliminary observation on the efficiency of the wind preventing and sand resisting ofrest belt in the western part of the great of Huanghe River[J]. Journal of Desert Research, 1983(1): 13−23.
    [33]
    张锦春, 刘长仲, 姚拓,等, 等. 乌兰布和沙漠天然植物区系特征及地理成分分析[J]. 草原与草坪, 2013, 33(1): 29−30.

    Zhang J C, Liu C Z, Yao T, et al. Analysis of floristic characteristics and the geographical elements of natural plants in Ulanbuh Desert[J]. Grassland and Turf, 2013, 33(1): 29−30.
    [34]
    Wu Z, Shen D, Huang L, et al. Study on the effect of the number of training samples on the accuracy of maximum likelihood supervision classification[J]. Forestry Exploration Design, 2018, 2: 115−117.
    [35]
    Hijmans R J, Cameron S E, Parra J L, et al. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 2005, 25: 1965−1978.
    [36]
    刘元亮, 李艳, 吴剑亮, 基于LSWI和NDVI时间序列的水田信息提取研究[J]. 地理与地理信息科学, 2015, 31(3): 32−39.

    Liu Y L, Li Y, Wu J L. Study on extraction of paddy fields based on LSWI and time-series NDVI[J]. Geography and Geo-Information Science, 2015, 31(3): 32−39.
    [37]
    李宁, 岳德鹏, 于强, 等. 磴口县地下水埋深时空变化特征[J]. 南水北调与水利科技, 2017, 15(3): 7.

    Li N, Yue D P, Yu Q, et al. Temporal and spatial variation characteristics of groundwater depth in Dengkou County[J]. South to North Water Transfers and Water Science and Technology, 2017, 15(3): 7.
    [38]
    郑家享. 统计大辞典[M]. 北京: 中国统计出版社, 1995: 135−156.

    Zheng J X. A great dictionary of statistics[M]. Beijing: China Statistics Press, 1995: 135−156.
    [39]
    Ranjitkar S, Xu J C , Shrestha K K. Ensemble forecast of climat suitability for the Trans-Himalayan Nyctaginaceae species[J]. Ecological Modeling, 2014, 282: 18−24.
    [40]
    刘兆飞, 王蕊, 姚治君. 蒙古高原气温与降水变化特征及CMIP5气候模式评估[J]. 资源科学, 2016, 38(5): 956−969.

    Liu Z F, Wang R, Yao Z J. Air temperature and precipitation over the Mongolian Plateau and assessment of CMIP5 climate models[J]. Resources Science, 2016, 38(5): 956−969.
    [41]
    Oliver J E. Intergovernmental panel in climate change (IPCC)[J]. Encyclopedia of Energy Natural Resource & Environmental Economics, 2013, 26(2): 48−56.
    [42]
    Booth T H, Nix H A, Busby J R, et al. Bioclim: the first species distribution modelling package, its early applications and relevance to most current MAXENT studies[J]. Diversity and Distributions, 2014, 20: 1−9. doi: 10.1111/ddi.12144
    [43]
    Gower J C. A general coefficient of similarity and some of its properties[J]. Biometrics, 1971, 27: 57−71.
    [44]
    Mahalanobis P C. On the generalised distance in statistics[J]. Proceedings of the National Institute of Sciences of India, 1936, 2: 49−55.
    [45]
    周志华, 机器学习[M]. 北京: 清华大学出版社, 2016: 121−139.

    Zhou Z H, Machine learning [M]. Beijing: Tsinghua University Press, 2016: 121−139.
    [46]
    Lopatin J, Dolos K, Hernández H J, et al. Comparing generalized linear models and random forest to model vascular plant species richness using LiDAR data in a natural forest in central Chile[J]. Remote Sensing of Environment, 2016, 173: 200−210. doi: 10.1016/j.rse.2015.11.029
    [47]
    王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4): 365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005

    Wang Y S, Xie B Y, Wan F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models[J]. Biodiversity Science, 2007, 15(4): 365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005
    [48]
    Parry M L, Palutikof J P, Linden P, et al. Contribution of working group Ⅱ to the fourth assessment report of the intergovernmental panel on climate change[J]. Encyclopedia of Language &  Linguistics, 2007, 32(9): 171−175.
    [49]
    Brown J L. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses[J]. Methods in Ecology and Evolution, 2014, 5(7): 694−700.
    [50]
    朱妮. 基于组合物种分布模型(Ensemble Model)的厚朴适宜生境分布模拟[J]. 四川农业大学学报, 2019, 37(4): 481−489.

    Zhu N. Modelling the suitable habitat distribution of Magnolia officinalis using Ensemble Model[J]. Journal of Sicuan Agriculture University, 2019, 37(4): 481−489.
    [51]
    罗玫, 王昊. 使用大熊猫数据评估Biomod2和Maxent分布预测模型的表现[J]. 应用生态学报, 2017, 28(12): 4001−4006.

    Luo M, Wang H. Evaluating the performance of species distribution models Biomod2 and MaxEnt using the giant panda distribution data[J]. Chinese Journal of Applied Ecology, 2017, 28(12): 4001−4006.
    [52]
    Buisson L, Thuiller W, Casajus N, et al. Uncertainty in ensemble forecasting of species distribution[J]. Global Change Biology, 2010, 16(4): 1145−1157. doi: 10.1111/j.1365-2486.2009.02000.x
    [53]
    Nicholas W, Synes P, Osborne E. Choice of predictor variables as a source of uncertainty in continental-scale species distribution modelling under climate change[J]. Global Ecology and Biogeography, 2011, 20(6): 904−914. doi: 10.1111/j.1466-8238.2010.00635.x
    [54]
    马松梅, 魏博, 李晓辰, 等. 气候变化对梭梭植物适宜分布的影响[J]. 生态学杂志, 2017, 27(5): 1243−1250.

    Ma S M, Wei B, Li X C, et al. The impacts of climate change on the potential distribution of Haloxylon ammodendron[J]. Chinese Journal of Ecology, 2017, 27(5): 1243−1250.
    [55]
    Elith B. Error and uncertainty in habitat models[J]. Journal of Applied Ecology, 2006, 43(3): 413−423.
    [56]
    王孝安. 安西荒漠植物群落和优势种的分布与环境的关系[J]. 植物学报, 1998, 40(11): 70−75.

    Wang X A. Environment relations with desert plant communities and distribution of domains in Anxi[J]. Acta Botanica Sinica, 1998, 40(11): 70−75.
    [57]
    刘亚传. 民勤绿洲生态环境演变的初步研究[J]. 生态学杂志, 1984(3): 1−4. doi: 10.13292/j.1000-4890.1984.0021

    Liu Y C. A preliminary study on the cological evolution in miqin oasis[J]. Chinese Journal of Ecology, 1984(3): 1−4. doi: 10.13292/j.1000-4890.1984.0021
    [58]
    姚德良, 李家春, 杜岳, 等. 沙坡头人工植被区陆气耦合模式及生物结皮与植被演变的机理研究[J]. 生态学报, 2002, 22(4): 452−460. doi: 10.3321/j.issn:1000-0933.2002.04.002

    Yao D L, Li J C, Du Y, et al. A land atmosphere coupling model and mechanism of the crust layer and the evolution of canopy in artificial vegetation area of Shapotou[J]. Acta Ecologica Sinica, 2002, 22(4): 452−460. doi: 10.3321/j.issn:1000-0933.2002.04.002
  • Related Articles

    [1]Yi Ziyue, Li Junjie, Sun Hailong, Chen Meiqing, Li Shuang, Xiang Wei. Contribution rate of climate factors to radial growth of main coniferous species in spurce-fir conifer mixed forest of northeastern China[J]. Journal of Beijing Forestry University, 2024, 46(5): 55-63. DOI: 10.12171/j.1000-1522.20220332
    [2]Zhang Hanyue, Feng Zhongke, Huang Guosheng, Yang Xueqing, Feng Zemin. Research on the growth rate model of Populus spp. considering environmental factors[J]. Journal of Beijing Forestry University, 2022, 44(11): 50-59. DOI: 10.12171/j.1000-1522.20210201
    [3]Luo Yu, Ma Li, Jin Chuan, Li Xinhao, Li Cheng, Jia Xin, Zha Tianshan. Temporal dynamics in photosynthetic electron transfer rate of Artemisia ordosica in growing season and its response to environmental factors in Mu Us Sandy Land of northwestern China[J]. Journal of Beijing Forestry University, 2021, 43(2): 54-62. DOI: 10.12171/j.1000-1522.20200154
    [4]WANG Jian-yu, WANG Qing-gui, YAN Guo-yong, JIANG Si-ling, LIU Bo-qi, XING Ya-juan. Response of tree growth to nitrogen deposition in spruce-fir-Korean pine virgin forest in Lesser Khingan Mountains in northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(4): 21-28. DOI: 10.13332/j.1000-1522.20160106
    [5]HAN Shi-jie, WANG Qing-gui. Response of boreal forest ecosystem to global climate change: a review[J]. Journal of Beijing Forestry University, 2016, 38(4): 1-20. DOI: 10.13332/j.1000-1522.20160046
    [6]PEI Shun-xiang, GUO Quan-shui, JIA Yu-bin, XIN Xue-bing, XU Ge-xi. Integral regressive analysis on the responses of first flowering date of eight woody species to climate change in Baoding, China[J]. Journal of Beijing Forestry University, 2015, 37(7): 11-18. DOI: 10.13332/j.1000-1522.20130423
    [7]ZENG Wei-sheng.. Compatible model system of volume growth rates of natural spruce forest in Tibet[J]. Journal of Beijing Forestry University, 2008, 30(5): 87-90.
    [8]LI Guo-lei, LIU Yong, LI Rui-sheng, XU Yang, GUO Bei. Responses of decomposition rate, nutrient return and composition of leaf litter to thinning intensities in Pinus tabulaeformis plantation[J]. Journal of Beijing Forestry University, 2008, 30(5): 52-57.
    [9]LI Chao-sheng, YANG Xiao-hui, ZHANG Ke-bin, YU Chun-tang, CI Long-jun. Response characteristics of precipitation, soil moisture and groundwater level in desert-oasis system[J]. Journal of Beijing Forestry University, 2007, 29(4): 129-135. DOI: 10.13332/j.1000-1522.2007.04.027
    [10]HUANG Rong-feng, FURUKAWA Ikuo, BAO Fu-cheng, ZHAO You-ke. Response of tree-ring structure of poplar to climate factors in the Mu Us Desert[J]. Journal of Beijing Forestry University, 2005, 27(3): 24-29.
  • Cited by

    Periodical cited type(8)

    1. 张慧心,冯艺,王红炎,李晗羽,王旭东. 郑州公园球型灌木美景度评价及影响因子研究. 城市建筑. 2023(04): 77-80 .
    2. 黄道京. 基于SBE法的广西国有高峰林场景观林美景度评价. 广西林业科学. 2023(04): 499-503 .
    3. 范晓彤,翟付顺,张昊. 基于AHP-模糊综合评价法的黄河沉沙池区乡村景观评价. 山东林业科技. 2023(06): 10-16 .
    4. 朱萱,梁裕宁,钟子豪,胡康,丁国昌. 县级城市公园春季植物景观评价及优化策略——以吉水县文化公园为例. 黑龙江生态工程职业学院学报. 2022(04): 10-14 .
    5. 黄懿. 基于SBE的城市水景观影响因素分析——以杭州湘湖为例. 浙江水利水电学院学报. 2022(03): 56-61 .
    6. 郑文俊,吴曼妮,周茂杰. 基于全卷积神经网络的侗族聚落景观图像分割与美景度评价. 湖南包装. 2021(03): 6-8+13 .
    7. 罗贵斌,胡道贵,吴晔,柏文芳. 汉中市香樟行道树美景度评价. 陕西林业科技. 2021(04): 49-54 .
    8. 何雅琴,谢艳秋,赖敏英,刘健行,杨铭,曾纪毅,邓传远. 基于灰色关联度的海坛岛野生灌木资源综合评价. 生态科学. 2021(06): 146-154 .

    Other cited types(1)

Catalog

    Article views (574) PDF downloads (95) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return