• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WANG Jian-yu, WANG Qing-gui, YAN Guo-yong, JIANG Si-ling, LIU Bo-qi, XING Ya-juan. Response of tree growth to nitrogen deposition in spruce-fir-Korean pine virgin forest in Lesser Khingan Mountains in northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(4): 21-28. DOI: 10.13332/j.1000-1522.20160106
Citation: WANG Jian-yu, WANG Qing-gui, YAN Guo-yong, JIANG Si-ling, LIU Bo-qi, XING Ya-juan. Response of tree growth to nitrogen deposition in spruce-fir-Korean pine virgin forest in Lesser Khingan Mountains in northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(4): 21-28. DOI: 10.13332/j.1000-1522.20160106

Response of tree growth to nitrogen deposition in spruce-fir-Korean pine virgin forest in Lesser Khingan Mountains in northeastern China

More Information
  • Received Date: September 11, 2016
  • Revised Date: October 19, 2016
  • Published Date: March 31, 2017
  • In this article, through field control experiment, four gradient nitrogen treatments were set as control (CK, no nitrogen (N), low-N (TL, 5 g/(m2·year)), medium-N (TM, 10 g/(m2·year)) and high-N (TH, 15 g/(m2·year)), in order to study the responses of DBH growth of main species to the increasing nitrogen deposition in spruce-fir-Korean pine virgin forest. The results showed that, with the increase of nitrogen adding gradient, the DBH growth of Betula costata appeared a trend of promoting first and then suppression. The DBH growth of Abies nephrolepis and Korean pine would be suppressed due to the increase of nitrogen adding gradient, and long-term nitrogen adding can lead to the degradation or death of A. nephrolepis. While Acer ukurunduense appeared more complex response, which was possibly related to the different response mechanism of this species to the varied nitrogen adding gradients. Meanwhile, it was also found that there existed a certain relationship between the amount of DBH and DBH growth, which was possibly related to tree age and its situated niche. Our study showed that nitrogen deposition could change the growth rate and mortality of trees, and then influence the aboveground ecosystem carbon pool and the carbon cycle of whole ecosystem.
  • [1]
    樊后保, 刘文飞, 杨跃霖, 等.杉木人工林凋落物分解对氮沉降增加的响应[J].北京林业大学学报, 2008, 30(2): 8-13. doi: 10.3321/j.issn:1000-1522.2008.02.002

    FAN H B, LIU W F, YANG Y L, et al. Decomposition of leaf litter of Chinese fir in response to increased nitrogen deposition[J]. Journal of Beijing Forestry University, 2008, 30(2): 8-13. doi: 10.3321/j.issn:1000-1522.2008.02.002
    [2]
    LIU X J, ZHANG Y, HAN W X, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494: 459-462. doi: 10.1038/nature11917
    [3]
    STOCKER T F, QIN D, PLATTNER G K. Climate change 2013: the physical science basis: working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2015.
    [4]
    刘修元, 杜恩在, 徐龙超, 等.落叶松原始林树木生长对氮添加的响应[J].植物生态学报, 2015, 39(5): 433-441. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201505001

    LIU X Y, DU E Z, XU L C, et al. Response of tree growth to nitrogen addition in a Larix gmelinii primitive forest[J]. Chinese Journal of Plant Ecology, 2015, 39(5): 433-441. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201505001
    [5]
    NIHLGÅRD B. The ammonium hypothesis: an additional explanation to the forest dieback in Europe[J]. Ambio, 1985, 16: 2-8. https://www.jstor.org/stable/4313090
    [6]
    EASTAUGH C S, PÖTZELSBERGER E, HASENAUER H. Assessing the impacts of climate change and nitrogen deposition on Norway spruce (Picea abies L. Karst) growth in Austria with BIOME-BGC[J]. Tree Physiology, 2011, 31(3): 262-274. doi: 10.1093/treephys/tpr033
    [7]
    CRANE W J B, BANKS J C G. Accumulation and retranslocation of foliar nitrogen in fertilised and irrigated Pinus radiata[J]. Forest Ecology and Management, 1992, 52(1-4): 201-223. doi: 10.1016/0378-1127(92)90502-Z
    [8]
    MAGNANI F, MENCUCCINI M, BORGHETTI M, et al. The human footprint in the carbon cycle of temperate and boreal forests[J]. Nature, 2007, 447: 849-851. doi: 10.1038/nature05847
    [9]
    HÖEGBERG P, FAN H, QUIST M, et al. Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest[J]. Global Change Biology, 2006, 12(3): 489-499. doi: 10.1111/j.1365-2486.2006.01102.x
    [10]
    CIAIS P, SCHELHAAS M J, ZAEHLE S, et al. Carbon accumulation in European forests[J]. Nature Geoscience, 2008, 1(7): 425-429. doi: 10.1038/ngeo233
    [11]
    NAKAJI T, FUKAMI M, DOKIYA Y, et al. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings[J]. Trees, 2001, 15(8): 453-461. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=70b1264427614269adf3e71da1343734
    [12]
    RAPPE-GEORGE M O, GÄRDENÄS A I, KLEJA D B. The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil[J]. Biogeosciences, 2013, 10(3): 1365-1377. doi: 10.5194/bg-10-1365-2013
    [13]
    MAGILL A H, ABER J D, CURRIE W S, et al. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard forest LTER, Massachusetts, USA[J]. Forest Ecology and Management, 2004, 196(1): 7-28. doi: 10.1016/j.foreco.2004.03.033
    [14]
    HYVÖNEN R, PERSSON T, ANDERSSON S, et al. Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe[J]. Biogeochemistry, 2008, 89(1): 121-137. doi: 10.1007/s10533-007-9121-3
    [15]
    方运霆, 莫江明, 周国逸, 等.鼎湖山主要森林类型植物胸径生长对氮沉降增加的初期响应[J].热带亚热带植物学报, 2005, 13(3): 198-204. doi: 10.3969/j.issn.1005-3395.2005.03.002

    FANG Y T, MO J M, ZHOU G Y, et al. Response of diameter at breast height increment to N additions in forests of Dinghushan Biosphere Reserve[J]. Journal of Tropical and Subtropical Botany, 2005, 13(3): 198-204. doi: 10.3969/j.issn.1005-3395.2005.03.002
    [16]
    CHEN Y L, HAN S J, SU B L, et al. Effects of different N sources on growth, nutrient uptake and ionic balance of Larix gmelinii seedlings[J]. Journal of Forestry Research, 2001, 12(3): 153-156. doi: 10.1007/BF02856697
    [17]
    GUNDERSEN P, EMMETT B A, KJØNAAS O J, et al. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data[J]. Forest Ecology and Management, 1998, 101(1): 37-55. doi: 10.1016-S0378-1127(97)00124-2/
    [18]
    WRIGHT R F, ROELOFS J G M, BREDEMEIER M, et al. NITREX: responses of coniferous forest ecosystems to experimentally changed deposition of nitrogen[J]. Forest Ecology and Management, 1995, 71(1-2): 163-169. doi: 10.1016/0378-1127(94)06093-X
    [19]
    ABER J, MCDOWELL W, NADELHOFFER K, et al. Nitrogen saturation in temperate forest ecosystems[J]. BioScience, 1998, 48(11): 921-934. doi: 10.2307/1313296
    [20]
    ZHANG W, MO J M, ZHOU G Y, et al. Methane uptake responses to nitrogen deposition in three tropical forests in southern China[J]. Journal of Geophysical Research: Atmospheres, 2008, 113: 3078. doi: 10.1029-2007JD009195/
    [21]
    马俊, 布仁仓, 邓华卫, 等.气候变化对小兴安岭主要阔叶树种地上部分固碳速率影响的模拟[J].应用生态学报, 2014, 25(9): 2449-2459 http://d.old.wanfangdata.com.cn/Periodical/yystxb201409001

    MA J, BU R C, DENG H W, et al. Simulating climate change effect on aboveground carbon sequestration rates of main broadleaved trees in the Xiaoxing'an Mountains area, Northeast China[J]. Chinese Journal of Applied Ecology, 2014, 25(9): 2449. http://d.old.wanfangdata.com.cn/Periodical/yystxb201409001
    [22]
    刘欣, 刘滨辉.大兴安岭不同坡向兴安落叶松径向生长对气候变化的响应[J].东北林业大学学报, 2014, 42(12): 13-17. doi: 10.3969/j.issn.1000-5382.2014.12.003

    LIU X, LIU B H. Response of Larix gmelinii (Rupr.) Kuzen radial growth to climate for different slope direction in Daxing'an Mountain[J]. Journal of Northeast Forestry University, 2014, 42(12): 13-17. doi: 10.3969/j.issn.1000-5382.2014.12.003
    [23]
    韩士杰, 王庆贵.北方森林生态系统对全球气候变化的响应研究进展[J].北京林业大学学报, 2016, 38(4): 1-20. doi: 10.13332/j.1000-1522.20160046

    HAN S J, WANG Q G. Response of boreal forest ecosystem to global climate change: a review[J]. Journal of Beijing Forestry University, 2016, 38(4): 1-20. doi: 10.13332/j.1000-1522.20160046
    [24]
    李兴欢, 刘瑞鹏, 毛子军, 等.小兴安岭红松日径向变化及其对气象因子的响应[J].生态学报, 2014, 34(7): 1635-1644. http://d.old.wanfangdata.com.cn/Periodical/stxb201407003

    LI X H, LIU R P, MAO Z J, et al. Daily stem radial variation of Pinus koraiensis and its response to meteorological parameters in Xiaoxing'an Mountain[J]. Acta Ecologica Sinica, 2014, 34(7): 1635-1644. http://d.old.wanfangdata.com.cn/Periodical/stxb201407003
    [25]
    DU E Z, LIU X Y, FANG J Y. Effects of nitrogen additions on biomass, stoichiometry and nutrient pools of moss Rhytidium rugosum in a boreal forest in Northeast China[J]. Environmental Pollution, 2014, 188: 166-171. doi: 10.1016/j.envpol.2014.02.011
    [26]
    MATSON P, LOHSE K A, HALL S J. The globalization of nitrogen deposition: consequences for terrestrial ecosystems[J]. AMBIO: A Journal of the Human Environment, 2002, 31(2): 113-119. doi: 10.1579/0044-7447-31.2.113
    [27]
    肖迪, 王晓洁, 张凯, 等.模拟氮沉降对五角枫幼苗生长的影响[J].北京林业大学学报, 2015, 37(10): 50-57. doi: 10.13332/j.1000-1522.20150079

    XIAO D, WANG X J, ZHANG K, et al. Effects of simulated nitrogen deposition on growth of Acer mono seedlings[J]. Journal of Beijing Forestry University, 2015, 37(10): 50-57. doi: 10.13332/j.1000-1522.20150079
    [28]
    MAGILL A H, ABER J D, HENDRICKS J J, et al. Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition[J]. Ecological Applications, 1997, 7(2): 402-415. doi: 10.1890/1051-0761(1997)007[0402:BROFET]2.0.CO;2
  • Related Articles

    [1]Wang Xuanying, Zhang Yi, Fan Xiuhua. Response of photosynthetic and fluorescence characteristics to nitrogen addition by seedlings of four dominant tree species in broadleaved-Korean pine forest[J]. Journal of Beijing Forestry University, 2024, 46(3): 69-79. DOI: 10.12171/j.1000-1522.20220488
    [2]Zhang Yi, Baiketuerhan Yeerjiang, Wang Xuanying, Zhang Xinna, Cheng Yanxia. Response of photosynthetic physiological characteristics of rare broadleaved tree species Juglans mandshurica seedlings to simulated nitrogen deposition[J]. Journal of Beijing Forestry University, 2024, 46(1): 10-18. DOI: 10.12171/j.1000-1522.20220225
    [3]Zhou Huoyan, Zhao Xiaodi. Potential suitable area and natural driving force of Artemisia desertorum shrub in Ulanbuh Desert of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(2): 96-107. DOI: 10.12171/j.1000-1522.20220160
    [4]ZHANG Yi, WANG Chun-mei, XU Ke, HAN Jin-feng, YANG Xin-tong, LIN Jia-li. Short-term effect of increasing nitrogen deposition on greenhouse gas emissions in Zoige wetland, western China.[J]. Journal of Beijing Forestry University, 2016, 38(8): 54-63. DOI: 10.13332/j.1000-1522.20160048
    [5]YAN Guo-yong, WANG Xiao-chun, XING Ya-juan, HAN Shi-jie, WANG Qing-gui. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36-43. DOI: 10.13332/j.1000-1522.20150433
    [6]HAN Shi-jie, WANG Qing-gui. Response of boreal forest ecosystem to global climate change: a review[J]. Journal of Beijing Forestry University, 2016, 38(4): 1-20. DOI: 10.13332/j.1000-1522.20160046
    [7]PEI Shun-xiang, GUO Quan-shui, JIA Yu-bin, XIN Xue-bing, XU Ge-xi. Integral regressive analysis on the responses of first flowering date of eight woody species to climate change in Baoding, China[J]. Journal of Beijing Forestry University, 2015, 37(7): 11-18. DOI: 10.13332/j.1000-1522.20130423
    [8]FAN Hou-bao, , LIU Wen-fei, YANG Yue-lin, ZHANG Zi-wen, CAO Hanyang, XU Lei. Decomposition of leaf litter of Chinese fir in response to increased nitrogen deposition[J]. Journal of Beijing Forestry University, 2008, 30(2): 8-13.
    [9]LI Chao-sheng, YANG Xiao-hui, ZHANG Ke-bin, YU Chun-tang, CI Long-jun. Response characteristics of precipitation, soil moisture and groundwater level in desert-oasis system[J]. Journal of Beijing Forestry University, 2007, 29(4): 129-135. DOI: 10.13332/j.1000-1522.2007.04.027
    [10]HUANG Rong-feng, FURUKAWA Ikuo, BAO Fu-cheng, ZHAO You-ke. Response of tree-ring structure of poplar to climate factors in the Mu Us Desert[J]. Journal of Beijing Forestry University, 2005, 27(3): 24-29.
  • Cited by

    Periodical cited type(10)

    1. 姚洪锡,冯坤乔,童冉,原文文,吴统贵,朱念福. 氮添加对水杉防护林生长的影响. 林业科学研究. 2024(05): 186-194 .
    2. 张家豪,王根绪,王文志,孙守琴. 大气氮沉降增加对树木生长和水碳利用的影响. 西部林业科学. 2023(03): 145-151+159 .
    3. 和滢埝,唐军荣,李亚麒,母德锦,陈诗,蔡年辉,许玉兰,陈林. 氮磷添加对云南松苗木生长节律的影响. 云南农业大学学报(自然科学). 2023(03): 465-475 .
    4. 和滢埝,唐军荣,李亚麒,母德锦,陈诗,蔡年辉,许玉兰,陈林. 外源氮磷添加对云南松苗木生长及根系形态的影响. 江苏农业科学. 2023(19): 116-124 .
    5. 问宇翔,冯坤乔,童冉,吴统贵,王高峰. 水杉人工林细根和粗根碳氮磷计量特征对N添加的响应. 林业科学研究. 2022(03): 161-168 .
    6. 郝龙飞,王庆成,刘婷岩. 东北地区4种林分土壤呼吸及温、湿度敏感性对氮添加的短期响应. 生态学报. 2020(02): 560-567 .
    7. 苏妮尔,沈海龙,丁佩军,钟兆华,徐惠德,杨玲. 不同坡位红皮云杉林木生长与土壤理化性质比较. 森林工程. 2020(02): 6-11+19 .
    8. 裴昊斐,高卫东,方娇阳,叶可可,祝燕,黄放,李庆梅. 模拟氮沉降对一年生香椿幼苗生长和光合特性的影响. 中国生态农业学报(中英文). 2019(10): 1546-1552 .
    9. 林婉奇,蔡金桓,薛立. 不同密度樟树(Cinnamomum camphora)幼苗生长和叶片性状对氮磷添加的响应. 生态学报. 2019(18): 6738-6744 .
    10. 王建宇,胡海清,邢亚娟,闫国永,王庆贵. 大兴安岭兴安落叶松林树木生物量对氮沉降的响应. 林业科学研究. 2018(03): 88-94 .

    Other cited types(10)

Catalog

    Article views (2259) PDF downloads (44) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return