• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Chen Yuqing, Du Bingshuai, Wang Shengnan, Cao Yibo, Yuan Deyi, Zhang Lingyun. Histological characteristics and related gene expression analysis of ovule abortion in Camellia oleifera[J]. Journal of Beijing Forestry University, 2023, 45(9): 9-20. DOI: 10.12171/j.1000-1522.20220182
Citation: Chen Yuqing, Du Bingshuai, Wang Shengnan, Cao Yibo, Yuan Deyi, Zhang Lingyun. Histological characteristics and related gene expression analysis of ovule abortion in Camellia oleifera[J]. Journal of Beijing Forestry University, 2023, 45(9): 9-20. DOI: 10.12171/j.1000-1522.20220182

Histological characteristics and related gene expression analysis of ovule abortion in Camellia oleifera

More Information
  • Received Date: May 10, 2022
  • Revised Date: June 07, 2022
  • Accepted Date: May 30, 2023
  • Available Online: June 01, 2023
  • Published Date: September 24, 2023
  •   Objective  The ovule abortion of Camellia oleifera is serious. Only a few ovules could develop into mature seeds, but its abortion mechanism is not clear. The research investigated abortion period, microstructure changes and abortion reasons of ovules to clarify the abortion process and to provide certain theoretical basis and practical significance for increasing the yield of Camellia oleifera.
      Method  The fruits of C. oleifera cv. ‘Huashuo’ were chosen as the experimental material. The ovule morphology in Camellia oleifera fruit was observed under stereomicroscope. We counted the proportion of abortive ovules. The stage of losing activity of abortive ovules was observed by FDA staining technique and stereomicroscope. The histological changes of fertile and abortive ovules were clarified by paraffin technique and microscopic observation, and the starch grain distribution in fertile and abortive ovules was marked by K-KI2 staining and PAS reaction. The CFDA fluorescence tracing experiment and laser confocal microscopy were used to reveal assimilate transport pathways in fertile and abortive ovules. The qRT-PCR was used to analyze the expression of genes related to sugar and energy metabolism, reactive oxygen species metabolism, and apoptosis processes in fertile and abortive ovules.
      Result  (1) The stereomicroscope observation showed that the size of fertile and abortive ovules differed after 26 WAA (weeks after anthesis). The results of FDA staining indicated that the abortive ovules gradually lost their activity during fruit development. (2) At 37 WAA, the proportion of abortive ovules reached 64.08%. (3) Microscopic observation showed that the embryo and endosperm of fertile ovules developed normally, and the inner and outer integuments were tightly united; the abortive ovules had no endosperm cells, and the space between the inner and outer integument was wild. Starch grains were observed in both the suspensor and endosperm of fertile ovules, and only a few starch grains were observed on the shrunken inner integuments of abortive ovules. (4) CFDA fluorescence tracing results revealed differences in assimilate transport modes between fertile and abortive ovules. There was no callose deposition on the inner integument of fertile ovules, while callose deposition can be seen on the inner integument of abortive ovules. (5) Genes related to sugar and energy metabolism, reactive oxygen species metabolism, and apoptosis processes were differentially expressed in fertile and abortive ovules.
      Conclusion  The abortive ovules have abnormal structure and lack starch accumulation. There are some callose depositions on inner integument. There are differences in the transport modes of assimilates between abortive ovules and fertile ovules. Different expressions of genes about material and energy metabolism, antioxidant action and apoptosis processed in the ovules might be related to the abortion of Camellia oleifera ovules.
  • [1]
    王小艺, 曹一博, 张凌云, 等. 油茶生长发育过程中脂肪酸成分的测定分析[J]. 中国农学通报, 2012, 28(13): 76−80. doi: 10.11924/j.issn.1000-6850.2012-0460

    Wang X Y, Cao Y B, Zhang L Y, et al. Analysis of the fatty acids compositions of Camellia in different growth stages[J]. Chinese Agricultural Science Bulletin, 2012, 28(13): 76−80. doi: 10.11924/j.issn.1000-6850.2012-0460
    [2]
    梁文静, 肖萍, 崔萌, 等. 油茶果实和种子生长发育的动态[J]. 南昌大学学报(理科版), 2019, 43(1): 46−52.

    Liang W J, Xiao P, Cui M, et al. The growth and development dynamics of Camellia oleifera Abel. fruits and seeds[J]. Journal of Nanchang University (Natural Science), 2019, 43(1): 46−52.
    [3]
    曹慧娟. 油茶胚胎学的观察[J]. 植物学报, 1965, 13(1): 44−60.

    Cao H J. Observation of Camellia embryology[J]. Acta Botanica Sinica, 1965, 13(1): 44−60.
    [4]
    周良骝, 任立中, 陈佩聪, 等. 油茶胚胎发育及落花落果的研究[J]. 安徽农学院学报, 1991, 18(3): 238−241.

    Zhou L L, Ren L Z, Chen P C, et al. Premature drop shedding and embryonic development of petals of the oil-tea Camellia[J]. Journal of Anhui Agricultural College, 1991, 18(3): 238−241.
    [5]
    邹锋. 攸县油茶生殖生物学研究[D]. 长沙: 中南林业科技大学, 2010.

    Zou F. The researches on reproductive biology of Camellia yubsienensis Hu. [D]. Changsha: Central South University of Forestry and Technology, 2010.
    [6]
    Gao C, Yang R, Yuan D Y. Characteristics of developmental differences between fertile and aborted ovules in Camellia oleifera[J]. Journal of the American Society for Horticultural Science, 2017, 142(5): 330−336. doi: 10.21273/JASHS04164-17
    [7]
    梁春莉, 刘孟军, 赵锦. 植物种子败育研究进展[J]. 分子植物育种, 2005, 3(1): 117−122. doi: 10.3969/j.issn.1672-416X.2005.01.020

    Liang C L, Liu M J, Zhao J. Research progress on plant seeds abortion[J]. Molecular Plant Breeding, 2005, 3(1): 117−122. doi: 10.3969/j.issn.1672-416X.2005.01.020
    [8]
    Liu J F, Cheng Y Q, Yan K, et al. The relationship between reproductive growth and blank fruit formation in Corylus heterophylla Fisch[J]. Scientia Horticulturae, 2012, 136: 128−134. doi: 10.1016/j.scienta.2012.01.008
    [9]
    闫晓娜. 扇脉杓兰种子败育机理的研究[D]. 北京: 中国林业科学研究院, 2015.

    Yan X N. Study on the mechanism of seed abortion in Cypripedium japonicum[D]. Beijing: Chinese Academy of Forestry, 2015.
    [10]
    张超越, 王迎夏, 郑艳艳, 等. 西瓜种子败育的胚胎学观察[J]. 中国瓜菜, 2019, 32(8): 134−138. doi: 10.3969/j.issn.1673-2871.2019.08.032

    Zhang C Y, Wang Y X, Zheng Y Y, et al. Embryological observations on seed abortion in watermelon[J]. China Cucurbits and Vegetables, 2019, 32(8): 134−138. doi: 10.3969/j.issn.1673-2871.2019.08.032
    [11]
    张懿, 张大兵, 刘曼. 植物体内糖分子的长距离运输及其分子机制[J]. 植物学报, 2015, 50(1): 107−121.

    Zhang Y, Zhang D B, Liu M. Long-distance transport of sugar in plants and molecular mechanism[J]. Acta Botanica Sinica, 2015, 50(1): 107−121.
    [12]
    Cheng J T, Wen S Y, Xiao S, et al. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation[J]. Journal of Experimental Botany, 2018, 69(3): 511−523. doi: 10.1093/jxb/erx440
    [13]
    Wang L, Ruan Y L. New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton[J]. Plant Physiology, 2012, 160(2): 777−787. doi: 10.1104/pp.112.203893
    [14]
    Werner D, Gerlitz N, Stadler R. A dual switch in phloem unloading during ovule development in Arabidopsis[J]. Protoplasma, 2011, 248(1): 225−235. doi: 10.1007/s00709-010-0223-8
    [15]
    张春吉. 榛子胚败育过程中物质运输障碍发生规律及基因差异表达谱研究[D]. 四平: 吉林师范大学, 2014.

    Zhang C J. Studies on material transport barriers and its differential gene expression profiles in the process of embryo abortion of hazelnut[D]. Siping: Jilin Normal University, 2014.
    [16]
    Rosellini D, Lorenzetti F, Bingham E T. Quantitative ovule sterility in Medicago sativa[J]. Theoretical and Applied Genetics, 1998, 97(8): 1289−1295. doi: 10.1007/s001220051021
    [17]
    Rosellini D, Ferranti F, Barone P, et al. Expression of female sterility in alfalfa (Medicago sativa)[J]. Sexual Plant Reproduction, 2003, 15(6): 271−279. doi: 10.1007/s00497-003-0163-y
    [18]
    Gong Z X, Han R, Xu L, et al. Combined transcriptome analysis reveals the ovule abortion regulatory mechanisms in the female sterile line of Pinus tabuliformis Carr.[J]. International Journal of Molecular Sciences, 2021, 22(6): 3138−3159. doi: 10.3390/ijms22063138
    [19]
    曾维英, 杨守萍, 喻德跃, 等. 大豆质核互作雄性不育系NJCMS2A及其保持系的花药蛋白质组比较研究[J]. 作物学报, 2007, 33(10): 1637−1643. doi: 10.3321/j.issn:0496-3490.2007.10.012

    Zeng W Y, Yang S P, Yu D Y, et al. A comparative study on anther proteomics between cytoplasmic-nuclear male sterile line NJCMS2A and its maintainer of soybean[J]. Acta Agronomica Sinica, 2007, 33(10): 1637−1643. doi: 10.3321/j.issn:0496-3490.2007.10.012
    [20]
    贾晋, 张鲁刚. 萝卜胞质雄性不育正常花蕾与败育花蕾DD-PCR及EST序列分析[J]. 核农学报, 2008, 22(4): 426−431.

    Jia J, Zhang L G. mRNA differential display and est sequence analysis of aborted bud and normal bud in radish (Raphanus sativus)[J]. Journal of Nuclear Agricultural Sciences, 2008, 22(4): 426−431.
    [21]
    王永平, 王莉, 陈鹏, 等. 银杏种实发育过程中中种皮的解剖与超微结构观察[J]. 植物生理学通讯, 2006, 42(6): 1086−1090.

    Wang Y P, Wang L, Chen P, et al. Observation on anatomical structure and ultra-structure of mesocoat during development of Ginkgo biloba L.[J]. Plant Physiology Journal, 2006, 42(6): 1086−1090.
    [22]
    杜兵帅. 板栗胚珠败育的细胞学及分子机理初探[D]. 北京: 北京农学院, 2020.

    Du B S. The preliminary study on cytological and molecular mechanism of ovule abortion in Chinese chestnut[D]. Beijing: Beijing University of Agriculture, 2020.
    [23]
    谭晓风, 袁德义, 袁军, 等. 大果油茶良种‘华硕’[J]. 林业科学, 2011, 47(12): 184−209. doi: 10.11707/j.1001-7488.20111228

    Tan X F, Yuan D Y, Yuan J, et al. An elite variety: Camellia oleifera ‘Huashuo’[J]. Scientia Silvae Sinicae, 2011, 47(12): 184−209. doi: 10.11707/j.1001-7488.20111228
    [24]
    Zhang L Y, Peng Y B, Pelleschi-Travier S, et al. Evidence for apoplasmic phloem unloading in developing apple fruit[J]. Plant Physiology, 2004, 135(1): 574−586. doi: 10.1104/pp.103.036632
    [25]
    李和平. 植物显微技术[M]. 2版. 北京: 科学出版社, 2009.

    Li H P. Plant microscopy[M]. 2nd ed. Beijing: Science Press, 2009.
    [26]
    姜金仲, 李云, 贺佳玉, 等. 四倍体刺槐胚珠败育及其机制[J]. 林业科学, 2011, 47(5): 40−45. doi: 10.11707/j.1001-7488.20110506

    Jiang J Z, Li Y, He J Y, et al. Ovule abortion and its mechanism for tetraploid Robinia pseudoacacia[J]. Scientia Silvae Sinicae, 2011, 47(5): 40−45. doi: 10.11707/j.1001-7488.20110506
    [27]
    张健, 吕柳新, 叶明志. 胚胎败育型荔枝胚胎发育异常的显微及亚显微观察[J]. 河南农业大学学报, 2006, 40(2): 194−197. doi: 10.3969/j.issn.1000-2340.2006.02.020

    Zhang J, Lü L X, Ye M Z. Microscopic and submicroscopic observations on the abnormal embryonic development of embryo-abortive litchi(Litchi chinensis Sonn. cv. luhebao)[J]. Journal of Henan Agricultural University, 2006, 40(2): 194−197. doi: 10.3969/j.issn.1000-2340.2006.02.020
    [28]
    Du B S, Zhang Q, Cao Q Q, et al. Morphological observation and protein expression of fertile and abortive ovules in Castanea mollissima[J]. Peer J, 2021, 9: e11756
    [29]
    Wang X J, Li X X, Zhang J W, et al. Characterization of nine alfalfa varieties for differences in ovule numbers and ovule sterility[J]. Australian Journal of Crop Science, 2011, 5(4): 447−452.
    [30]
    Zhou H C, Jin L, Li J, et al. Altered callose deposition during embryo sac formation of multi-pistil mutant (mp1) in Medicago sativa[J]. Genetics and Molecular Research, 2016, 15(2): 10.4238.
    [31]
    Swanson R, Edlund A F, Preuss D. Species specificity in pollen-pistil interactions[J]. Annual Review of Genetics, 2004, 38: 793−818. doi: 10.1146/annurev.genet.38.072902.092356
    [32]
    袁艺, 杜国华, 谢中稳, 等. 板栗空篷发生的主要营养物质的变化[J]. 武汉植物学研究, 1997, 15(3): 243−249.

    Yuan Y, Du G H, Xie Z W, et al. Changes of some main nutritional substances during the development course of empty-shell chestnut[J]. Journal of Wuhan Botanical Research, 1997, 15(3): 243−249.
    [33]
    文李, 刘盖, 张再君, 等. 红莲型水稻细胞质雄性不育花药蛋白质组学初步分析[J]. 遗传, 2006, 28(3): 311−316. doi: 10.3321/j.issn:0253-9772.2006.03.011

    Wen L, Liu G, Zhang Z J, et al. Preliminary proteomics analysis of the total proteins of hl type cytoplasmic male sterility rice anther[J]. Hereditas, 2006, 28(3): 311−316. doi: 10.3321/j.issn:0253-9772.2006.03.011
    [34]
    Osorio S, Vallarino J G, Szecowka M, et al. Alteration of the interconversion of pyruvate and malate in the plastid or cytosol of ripening tomato fruit invokes diverse consequences on sugar but similar effects on cellular organic acid, metabolism, and transitory starch accumulation[J]. Plant Physiology, 2013, 161(2): 628−643. doi: 10.1104/pp.112.211094
    [35]
    刘静, 张鲁刚, 王风敏, 等. 萝卜花蕾败育过程中的组织细胞学特征观察[J]. 西北农业学报, 2008, 17(5): 272−276. doi: 10.3969/j.issn.1004-1389.2008.05.059

    Liu J, Zhang L G, Wang F M, et al. Observation of histocytological feature on radish flower bud during aborting[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2008, 17(5): 272−276. doi: 10.3969/j.issn.1004-1389.2008.05.059
    [36]
    位明明, 王俊生, 张改生, 等. GAPDH基因表达与小麦生理型雄性不育花药败育的关系[J]. 分子植物育种, 2009, 7(4): 679−684. doi: 10.3969/mpb.007.000679

    Wei M M, Wang J S, Zhang G S, et al. Relationship between the expression of GAPDH gene and anther abortion of physiological male sterile of wheat[J]. Molecular Plant Breeding, 2009, 7(4): 679−684. doi: 10.3969/mpb.007.000679
    [37]
    刘浩, 柳燕贞, 王静, 等. ‘白核’龙眼种子败育不同时期差异蛋白分析[J]. 园艺学报, 2009, 36(12): 1725−1732. doi: 10.3321/j.issn:0513-353X.2009.12.002

    Liu H, Liu Y Z, Wang J, et al. Analysis of differentially expressed proteins during the different states of longan seed abortion[J]. Acta Horticulturae Sinica, 2009, 36(12): 1725−1732. doi: 10.3321/j.issn:0513-353X.2009.12.002
  • Related Articles

    [1]Yu Yongchao, Kang Feng, Zheng Yongjun, Lü Haotun, Wang Yaxiong. Design and simulation of the automatic-leveling high-position platform in orchards[J]. Journal of Beijing Forestry University, 2021, 43(2): 150-159. DOI: 10.12171/j.1000-1522.20200398
    [2]Zhu Li, Ma Jingyao, Meng Zhaoxin, Shi Jinsong, Xing Xin, Jiang Zhongjin. Compensation control of woodworking feeding platform based on self-adaptive genetic optimization recurrent neural network[J]. Journal of Beijing Forestry University, 2020, 42(12): 125-134. DOI: 10.12171/j.1000-1522.20200248
    [3]Meng Zhaoxin, Cao Jiajia, Zhu Li, Ma Jingyao, Shi Jinsong. Kinetics analysis and strategy of compensation control study for feeding platform of curve saw for wood[J]. Journal of Beijing Forestry University, 2020, 42(2): 159-166. DOI: 10.12171/j.1000-1522.20190234
    [4]MENG Zhao-xin, XIAO Ding-fu, YIN Hang, LI Shang, ZHANG Cong.. Mechanism error compensation method of parallel curve feeding platform.[J]. Journal of Beijing Forestry University, 2016, 38(9): 95-101. DOI: 10.13332/j.1000-1522.20160026
    [5]HUANG He-shan, LI Ting, LIU Jin-hao. Dynamic modeling and simulation analysis of 6-HUS parallel moving platform[J]. Journal of Beijing Forestry University, 2015, 37(4): 143-150. DOI: DOI:10.13332/j.1000-1522.20140349
    [6]YU Yang, YU Guo-sheng, DE Xue-hong, YUAN Da-long, CHEN Zhong-jia. Trajectory simulation of the internal cylinder meshing forming device based on ADAMS method[J]. Journal of Beijing Forestry University, 2014, 36(4): 147-151. DOI: 10.13332/j.cnki.jbfu.2014.04.003
    [7]DUAN Xu-liang, FENG Xiu-lan, ZHAO Lei, ZHANG Zhi-xiang, LIN Shan-zhi. Design and development of information sharing platform on forest and flower germplasm resources[J]. Journal of Beijing Forestry University, 2007, 29(5): 147-152. DOI: 10.13332/j.1000-1522.2007.05.027
    [8]GAO Kai, LI Wen-bin, KAN Jiang-ming. An automatic measuring method for the trunk curvature of standing tree based on computer vision[J]. Journal of Beijing Forestry University, 2007, 29(4): 10-14. DOI: 10.13332/j.1000-1522.2007.04.003
    [9]LIU Peng-ju, ZHOU Yu-fei, TANG Xiao-ming. Intelligent data input software of forest resources on PDA[J]. Journal of Beijing Forestry University, 2007, 29(2): 105-110.
    [10]DU Hua-qiang, FAN Wen-yi, ZHAO Xian-wen, WANG Xue. Fractal and geo-statistic analysis software system for remote sensing data based on Matlab[J]. Journal of Beijing Forestry University, 2005, 27(5): 92-97.
  • Cited by

    Periodical cited type(2)

    1. 詹茹心,李慧,马洪娜. 缺磷胁迫对益母草幼苗叶片的影响. 耕作与栽培. 2024(05): 18-24 .
    2. 姚诗雨,王杰,黄文娟,彭承志,宋双飞. 不同展叶物候期胡杨离子分布、吸收和运输特征及其与土壤盐分关系. 西北植物学报. 2023(12): 2118-2129 .

    Other cited types(1)

Catalog

    Article views (473) PDF downloads (85) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return