• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yu Yongchao, Kang Feng, Zheng Yongjun, Lü Haotun, Wang Yaxiong. Design and simulation of the automatic-leveling high-position platform in orchards[J]. Journal of Beijing Forestry University, 2021, 43(2): 150-159. DOI: 10.12171/j.1000-1522.20200398
Citation: Yu Yongchao, Kang Feng, Zheng Yongjun, Lü Haotun, Wang Yaxiong. Design and simulation of the automatic-leveling high-position platform in orchards[J]. Journal of Beijing Forestry University, 2021, 43(2): 150-159. DOI: 10.12171/j.1000-1522.20200398

Design and simulation of the automatic-leveling high-position platform in orchards

More Information
  • Received Date: December 12, 2020
  • Revised Date: December 28, 2020
  • Available Online: January 17, 2021
  • Published Date: February 23, 2021
  •   Objective  There is a low degree of mechanization in China, especially the lack of machinery for hilly orchards. At present, the flower thinning, fruit-separated, bagging, picking and other heavy works of orchards mainly rely on artificial ladders. In order to improve the harvest efficiency, safety and stability of orchard harvesting machinery, we designed an automatic-leveling high-position platform suitable for apple orchards in hilly areas.
      Method  Based on the characteristics of orchard terrain and the height of fruit trees, the design requirements and leveling methods of the platform, the size of different parts of pitch and roll, the thrust required by the hydraulic cylinder, the relationship between platform angle and the displacement of hydraulic cylinder were determined. A mathematical model of the platform control system was established. Then, we used an incremental PID controller to simulate the control leveling performance in Simulink with different interference signals. An extreme inclination slope experiment in Adams was designed, where the platform was simulated to verify the safety under different postures, different lifting heights and varied loads.
      Result  The mathematical relationship of each part was established, and the basic dimensions of each part were determined so as to establish the three-dimensional model of the platform. In the control system simulation, the pitch and roll control systems can quickly return the platform to the horizontal position under the step interference signal. The leveling time was 1.6 and 2.1 s, respectively, and the overshoot was 0. Under the sinusoidal interference signal, the pitch and roll control system can keep the platform near 0°, and the fluctuation range was between 0.15° and 0.19°. The limit tilting slope simulation experiment of the platform revealed that the platform’s tilting stability decreased with the increase of lifting height and load. Compared with the case without leveling, the minimum limit tilt angle with leveling increased by 24.77%, so the safety of platform significantly improved.
      Conclusion  The designed automatic leveling high-position platform in orchards can always maintain level under different interferences, with good anti-tilting ability, safety and reliability, and can meet the needs of hilly orchards.
  • [1]
    孙振杰. 履带式多功能果园作业平台的设计与研究[D]. 保定: 河北农业大学, 2012.

    Sun Z J. Design and research of crawler multifunctional orchard operating platform[D]. Baoding: Hebei Agricultural University, 2012.
    [2]
    郑永军, 江世界, 陈炳太, 等. 丘陵山区果园机械化技术与装备研究进展分析[J]. 农业机械学报, 2020, 51(11):1−20. doi: 10.6041/j.issn.1000-1298.2020.11.001.

    Zheng Y J, Jiang S J, Chen B T, et al. Review on technology and equipment of the mechanization in hilly orchard[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 1−20. doi: 10.6041/j.issn.1000-1298.2020.11.001.
    [3]
    王利民, 刘佳, 高建孟. 中国苹果空间分布格局及年际动态变化分析[J]. 中国农业信息, 2019, 31(4):84−93.

    Wang L M, Liu J, Gao J M. Analysis of spatial pattern and interannual dynamics of apple planting area in China[J]. China Agricultural Informatics, 2019, 31(4): 84−93.
    [4]
    罗海风, 谭月胜. 一种欠驱动双板分离式采摘器的研制[J]. 北京林业大学学报, 2018, 40(12):110−116.

    Luo H F, Tan Y S. Research on an under actuated dual separation plate harvestor[J]. Journal of Beijing Forestry University, 2018, 40(12): 110−116.
    [5]
    邓享, 阚江明, 李文彬. 背负式林果采摘机的人机工程学评价[J]. 北京林业大学学报, 2017, 39(6):131−136.

    Deng X, Kan J M, Li W B. Ergonomics evaluation of knapsack forest-fruit-picking machine[J]. Journal of Beijing Forestry University, 2017, 39(6): 131−136.
    [6]
    齐文超, 李彦明, 陶建峰, 等. 丘陵山地拖拉机姿态主动调整系统设计与实验[J]. 农业机械学报, 2019, 50(7):381−388. doi: 10.6041/j.issn.1000-1298.2019.07.042.

    Qi W C, Li Y M, Tao J F, et al. Design and experiment of active attitude adjustment system for hilly area tractors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 381−388. doi: 10.6041/j.issn.1000-1298.2019.07.042.
    [7]
    齐文超, 李彦明, 张锦辉, 等. 丘陵山地拖拉机车身调平双闭环模糊PID控制方法[J]. 农业机械学报, 2019, 50(10):17−23, 34. doi: 10.6041/j.issn.1000-1298.2019.10.002.

    Qi W C, Li Y M, Zhang J H, et al. Double closed loop fuzzy pid control method of tractor body leveling on hilly and mountainous areas[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 17−23, 34. doi: 10.6041/j.issn.1000-1298.2019.10.002.
    [8]
    周浩, 胡炼, 罗锡文, 等. 旋耕机自动调平系统设计与试验[J]. 农业机械学报, 2016, 47(增刊 1):117−123.

    Zhou H, Hu L, Luo X W, et al. Design and experiment on auto leveling system of rotary tiller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(Suppl. 1): 117−123.
    [9]
    胡炼, 林潮兴, 罗锡文, 等. 农机具自动调平控制系统设计与试验[J]. 农业工程学报, 2015, 31(8):15−20.

    Hu L, Lin C X, Luo X W, et al. Design and experiment on auto leveling control system of agricultural implements[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(8): 15−20.
    [10]
    李钊, 樊桂菊, 张昊, 等. 农机具自动调平现状及趋势分析[J]. 中国农机化学报, 2019, 40(4):48−53.

    Li Z, Fan G J, Zhang H, et al. Analysis on the present situation and tendency of automatic leveling in agricultural machinery[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(4): 48−53.
    [11]
    刘大为, 谢方平, 李旭, 等. 果园采摘平台行走机构的研究现状及发展趋势[J]. 农机化研究, 2013, 35(2):249−252. doi: 10.3969/j.issn.1003-188X.2013.02.061.

    Liu D W, Xie F P, Li X, et al. Research status and development trend of running gear in orchard picking platform[J]. Journal of Agricultural Mechanization Research, 2013, 35(2): 249−252. doi: 10.3969/j.issn.1003-188X.2013.02.061.
    [12]
    Lee S S, Kim J T, Park W Y. Structural analysis for the development of a vertically raise type aerial work machinery[J]. The Journal of Korea Institute of Information, Electronics, and Communication Technology, 2017, 10(3): 225−231. doi: 10.17661/jkiiect.2017.10.3.225
    [13]
    Lee S S, Kim J T, Park W Y. Development of centralized controller with remote control and hydraulic lift[J]. The Journal of Korea Institute of Information, Electronics, and Communication Technology, 2017, 10(3): 232−241. doi: 10.17661/jkiiect.2017.10.3.232
    [14]
    刘丽星, 刘洪杰, 裴晓康. 果园作业平台现状及发展趋势[J]. 现代农业科技, 2020(5):154−156, 163. doi: 10.3969/j.issn.1007-5739.2020.05.096

    Liu L X, Liu H J, Pei X K. Current situation and development trend of orchard work platform[J]. Modern Agricultural Science and Technology, 2020(5): 154−156, 163. doi: 10.3969/j.issn.1007-5739.2020.05.096
    [15]
    刘西宁, 朱海涛, 巴合提. 牧神LG–1型多功能果园作业机的研制[J]. 新疆农机化, 2009, 30(1):42−44. doi: 10.3969/j.issn.1007-7782.2009.01.021

    Liu X N, Zhu H T, Baheti. Development of Mushen LG-1 multifunctional orchard working machine[J]. Xinjiang Agricultural Mechanization, 2009, 30(1): 42−44. doi: 10.3969/j.issn.1007-7782.2009.01.021
    [16]
    崔志超, 管春松, 陈永生, 等. 温室用小型多功能电动履带式作业平台设计[J]. 农业工程学报, 2019, 35(9):48−57. doi: 10.11975/j.issn.1002-6819.2019.09.006.

    Cui Z C, Guan C S, Chen Y S, et al. Design of small multi-functional electric crawler platform for greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(9): 48−57. doi: 10.11975/j.issn.1002-6819.2019.09.006.
    [17]
    Fan G J, Wang Y Z, Zhang X H. Development and experiment of lifting platform for orchards in hilly area[J]. Applied Mechanics and Materials, 2017, 865: 111−117. doi: 10.4028/www.scientific.net/AMM.865.111.
    [18]
    樊桂菊, 王永振, 张晓辉, 等. 果园升降平台自动调平控制系统设计与试验[J]. 农业工程学报, 2017, 33(11):38−46. doi: 10.11975/j.issn.1002-6819.2017.11.005.

    Fan G J, Wang Y Z, Zhang X H, et al. Design and experiment of automatic leveling control system for orchards lifting platform[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 38−46. doi: 10.11975/j.issn.1002-6819.2017.11.005.
    [19]
    刘大为, 谢方平, 李旭, 等. 小型果园升降作业平台的设计与试验[J]. 农机工程学报, 2015, 31(3):113−121.

    Liu D W, Xie F P, Li X, et al. Design and experiment of small lifting platform in orchard[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3): 113−121.
    [20]
    王小龙, 谢方平, 刘大为, 等. 果园升降平台调平装置的设计[J]. 湖南农业大学学报, 2014, 40(5):548−551.

    Wang X L, Xie F P, Liu D W, et al. Design and experiment of the leveling device of the orchard lifting platform[J]. Journal of Hunan Agricultural University, 2014, 40(5): 548−551.
    [21]
    Duan Z H, Qiu W, Ding W M, et al. Tilting stability analysis and experiment of the 3-DOF lifting platform for hilly orchards[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(6): 73−80. doi: 10.25165/j.ijabe.20181106.3523.
    [22]
    袁文龙, 李明远, 滕新素, 等. 现代新型苹果园适度规模化建园技术标准[J]. 河北农业, 2019(3):48−50.

    Yuan W L, Li M Y, Teng X S, et al. Modern new apple orchard moderately large-scale construction technology standards[J]. Hebei Agriculture, 2019(3): 48−50.
    [23]
    Tian H Y, Zhang Z Y. Design and simulation based on Pro/E for a hydraulic lift platform in scissors type[J]. Procedia Engineering, 2011, 16: 772−781. doi: 10.1016/j.proeng.2011.08.1153.
    [24]
    刘俊谊, 杨刚, 张万军, 等. 剪叉式提升机构受力特性分析[J]. 解放军理工大学学报(自然科学版), 2014, 15(2):133−138.

    Liu J Y, Yang G, Zhang W J, et al. Force analysis of scissor lift mechanisms[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2014, 15(2): 133−138.
    [25]
    国家技术监督局. 中国成年人人体尺寸: GB10000—1988[S]. 北京: 中国标准化与信息分类编码研究所, 1988.

    State Bureau of Technical Supervision. Human dimensions of Chinese adults: GB10000−1988[S]. Beijing: China National Institute of Standardization, 1988.
    [26]
    李四伟. 基于虚位移原理和有限元仿真的剪叉机构优化[J]. 机械工程师, 2017(3):117−118. doi: 10.3969/j.issn.1002-2333.2017.03.053.

    Li S W. Fork mechanism optimization based on virtual displacement principle and finite meta simulation[J]. Mechanical Engineer, 2017(3): 117−118. doi: 10.3969/j.issn.1002-2333.2017.03.053.
    [27]
    许益民. 电液比例控制系统分析与设计[M]. 北京: 机械工业出版社, 2005.

    Xu Y M. Analysis and design of electro-hydraulic proportional control system[M]. Beijing: China Machine Press, 2005.
    [28]
    Eryilmaz B, Wilson B H. Unified modeling and analysis of a proportional valve[J]. Journal of the Franklin Institute, 2005, 343(1): 48−68.
    [29]
    张兵, 邓子龙. 基于Simulink的比例阀控液压缸的建模与仿真[J]. 机械制造与自动化, 2016, 45(3):105−108. doi: 10.3969/j.issn.1671-5276.2016.03.032.

    Zhang B, Deng Z L. Simulink based modeling and simulation of the proportional valve controlled cylinder hydraulic system[J]. Machine Building & Automation, 2016, 45(3): 105−108. doi: 10.3969/j.issn.1671-5276.2016.03.032.
    [30]
    郭洪波, 水涌涛, 李磊, 等. 阀控液压缸动力机构通用传递函数建模与分析[J]. 液压气动与密封, 2018, 38(2):22−25. doi: 10.3969/j.issn.1008-0813.2018.02.006.

    Guo H B, Shui Y T, Li L, et al. The general transfer function modeling and analysis of the valve-controlled hydraulic cylinder power mechanism[J]. Hydraulics Pneumatics and Seals, 2018, 38(2): 22−25. doi: 10.3969/j.issn.1008-0813.2018.02.006.
    [31]
    胡寿松. 自动控制原理[M]. 北京: 科学出版社, 2007.

    Hu S S. Principle of automatic control[M]. Beijing: Science Press, 2007.
    [32]
    吕广明. 工程机械智能化技术[M]. 北京: 中国电力出版社, 2007.

    Lü G M. Intelligent technology of engineering machinery[M]. Beijing: China Electric Power Press, 2007.
  • Related Articles

    [1]Shen Xihuan, Li Huafeng, Zhao Shejiao, Ma Jianwei, Li Shujing, Wang Jun. Investigation and analysis of seedling and experiment plantation of 40 half-sib-families from 4 seed provenances of Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2022, 44(4): 47-53. DOI: 10.12171/j.1000-1522.20210243
    [2]Zhou Hongxin, Didar Xerdiman, Li Shaocai, Sun Hailong, Tan Changming, Wang Xiaowen, Xia Min. Experiment on shrub spray sowing technology in limestone dreg field[J]. Journal of Beijing Forestry University, 2022, 44(1): 87-93. DOI: 10.12171/j.1000-1522.20210187
    [3]Meng Zhaoxin, Cao Jiajia, Zhu Li, Ma Jingyao, Shi Jinsong. Kinetics analysis and strategy of compensation control study for feeding platform of curve saw for wood[J]. Journal of Beijing Forestry University, 2020, 42(2): 159-166. DOI: 10.12171/j.1000-1522.20190234
    [4]Wang Yuanming, Zhang Fangyu, Yang Xuechun, Wang Lihai, Dong Zengchuan. Wave elimination mechanism of wavebreak forest by physical experiments in Baidajie Dike, Nenjiang River of northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(10): 121-127. DOI: 10.13332/j.1000-1522.20180035
    [5]Li Xiang, Wang Yaming, Meng Chen, Li Jiao, Niu Jianzhi. A dynamic crown interception model based on simulated rainfall experiments of small trees[J]. Journal of Beijing Forestry University, 2018, 40(4): 43-50. DOI: 10.13332/j.1000-1522.20170348
    [6]WANG Chao, WANG Dong-mei, LI Yong-hong, ZHANG Yan, LAI Wen-hao. Introduction experiment of bio-energy plant Xanthoceras sorbifolia in the gully region of the loess tableland residue in Shanxi Province,northern China.[J]. Journal of Beijing Forestry University, 2013, 35(3): 90-96.
    [7]LI Yan-jie, XU Chen, LU Yuan-jia, ZHAO Dong. Finite element analysis and experiments on the drill of earth auger[J]. Journal of Beijing Forestry University, 2013, 35(2): 112-117.
    [8]ZHANG Jun-mei, LI Wen-bin, SA Chao, WANG De-ming. Motion control system of remote control pruning robot for standing trees[J]. Journal of Beijing Forestry University, 2007, 29(4): 33-36. DOI: 10.13332/j.1000-1522.2007.04.008
    [9]ZHANG Jun-mei, LI Wen-bin, SA Chao, WANG De-ming. Power control system of remote control pruning robot for standing trees[J]. Journal of Beijing Forestry University, 2007, 29(4): 22-26. DOI: 10.13332/j.1000-1522.2007.04.006
    [10]WANG An-zhi, LIU Jian-mei, PEI Tie-fan, JIN Chang-jie. An experiment and model construction of rainfall interception by Picea koraiensis[J]. Journal of Beijing Forestry University, 2005, 27(2): 38-42.
  • Cited by

    Periodical cited type(11)

    1. 杨涛,孙付春,黄波,吴柏强,冉光泽. 果园作业平台关键技术研究进展. 中国农机化学报. 2024(01): 152-159 .
    2. 汪若尘,蒋亦勇,丁仁凯,孙泽宇,徐可. 基于BP神经网络PID的机电式作业机全向调平控制. 农业工程学报. 2024(23): 52-62 .
    3. 姜欢龙,严重勇,李青涛,梁丽,李佳阳,谭芸颖. 自走式农业机械静态稳定性研究现状及展望. 西华大学学报(自然科学版). 2023(01): 32-41 .
    4. 聂昭成,罗红品,刘威,李光林. 丘陵山地作物信息采集全向自平衡装置的设计与试验. 西南大学学报(自然科学版). 2023(10): 129-138 .
    5. 蒋俞,孙泽宇,汪若尘,夏长高,叶青,郭逸凡. 丘陵山区履带式作业机全向调平系统设计与性能试验. 农业工程学报. 2023(18): 64-73 .
    6. 孙泽宇,夏长高,蒋俞,郭逸凡,汪若尘. 基于QBP-PID的履带式作业机全向调平控制研究. 农业机械学报. 2023(12): 397-406 .
    7. 姜彪,付友,郭靖,张海林,马新华. 煤矿抢险移动式自动调平搭载平台控制系统. 煤矿机械. 2022(04): 181-185 .
    8. 张翠英,仪垂良,刘学峰,任冬梅,张成保. 基于CAN总线的悬浮式转向驱动桥电气控制系统设计. 农业装备与车辆工程. 2021(05): 1-5 .
    9. 缪友谊,陈小兵,朱继平,袁栋,陈伟,丁艳. 果园作业平台研究进展分析. 中国农机化学报. 2021(06): 41-49 .
    10. 李林林,邓干然,林卫国,崔振德,何冯光,李国杰. 农业机械自动调平技术发展现状与趋势. 现代农业装备. 2021(05): 2-7+35 .
    11. 吕昊暾,胡召田,于泳超,康峰,郑永军. 果园高位作业平台自动调平前馈PID控制方法. 农业工程学报. 2021(18): 20-28 .

    Other cited types(5)

Catalog

    Article views (2133) PDF downloads (88) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return