• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yu Yongchao, Kang Feng, Zheng Yongjun, Lü Haotun, Wang Yaxiong. Design and simulation of the automatic-leveling high-position platform in orchards[J]. Journal of Beijing Forestry University, 2021, 43(2): 150-159. DOI: 10.12171/j.1000-1522.20200398
Citation: Yu Yongchao, Kang Feng, Zheng Yongjun, Lü Haotun, Wang Yaxiong. Design and simulation of the automatic-leveling high-position platform in orchards[J]. Journal of Beijing Forestry University, 2021, 43(2): 150-159. DOI: 10.12171/j.1000-1522.20200398

Design and simulation of the automatic-leveling high-position platform in orchards

More Information
  • Received Date: December 12, 2020
  • Revised Date: December 28, 2020
  • Available Online: January 17, 2021
  • Published Date: February 23, 2021
  •   Objective  There is a low degree of mechanization in China, especially the lack of machinery for hilly orchards. At present, the flower thinning, fruit-separated, bagging, picking and other heavy works of orchards mainly rely on artificial ladders. In order to improve the harvest efficiency, safety and stability of orchard harvesting machinery, we designed an automatic-leveling high-position platform suitable for apple orchards in hilly areas.
      Method  Based on the characteristics of orchard terrain and the height of fruit trees, the design requirements and leveling methods of the platform, the size of different parts of pitch and roll, the thrust required by the hydraulic cylinder, the relationship between platform angle and the displacement of hydraulic cylinder were determined. A mathematical model of the platform control system was established. Then, we used an incremental PID controller to simulate the control leveling performance in Simulink with different interference signals. An extreme inclination slope experiment in Adams was designed, where the platform was simulated to verify the safety under different postures, different lifting heights and varied loads.
      Result  The mathematical relationship of each part was established, and the basic dimensions of each part were determined so as to establish the three-dimensional model of the platform. In the control system simulation, the pitch and roll control systems can quickly return the platform to the horizontal position under the step interference signal. The leveling time was 1.6 and 2.1 s, respectively, and the overshoot was 0. Under the sinusoidal interference signal, the pitch and roll control system can keep the platform near 0°, and the fluctuation range was between 0.15° and 0.19°. The limit tilting slope simulation experiment of the platform revealed that the platform’s tilting stability decreased with the increase of lifting height and load. Compared with the case without leveling, the minimum limit tilt angle with leveling increased by 24.77%, so the safety of platform significantly improved.
      Conclusion  The designed automatic leveling high-position platform in orchards can always maintain level under different interferences, with good anti-tilting ability, safety and reliability, and can meet the needs of hilly orchards.
  • [1]
    孙振杰. 履带式多功能果园作业平台的设计与研究[D]. 保定: 河北农业大学, 2012.

    Sun Z J. Design and research of crawler multifunctional orchard operating platform[D]. Baoding: Hebei Agricultural University, 2012.
    [2]
    郑永军, 江世界, 陈炳太, 等. 丘陵山区果园机械化技术与装备研究进展分析[J]. 农业机械学报, 2020, 51(11):1−20. doi: 10.6041/j.issn.1000-1298.2020.11.001.

    Zheng Y J, Jiang S J, Chen B T, et al. Review on technology and equipment of the mechanization in hilly orchard[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 1−20. doi: 10.6041/j.issn.1000-1298.2020.11.001.
    [3]
    王利民, 刘佳, 高建孟. 中国苹果空间分布格局及年际动态变化分析[J]. 中国农业信息, 2019, 31(4):84−93.

    Wang L M, Liu J, Gao J M. Analysis of spatial pattern and interannual dynamics of apple planting area in China[J]. China Agricultural Informatics, 2019, 31(4): 84−93.
    [4]
    罗海风, 谭月胜. 一种欠驱动双板分离式采摘器的研制[J]. 北京林业大学学报, 2018, 40(12):110−116.

    Luo H F, Tan Y S. Research on an under actuated dual separation plate harvestor[J]. Journal of Beijing Forestry University, 2018, 40(12): 110−116.
    [5]
    邓享, 阚江明, 李文彬. 背负式林果采摘机的人机工程学评价[J]. 北京林业大学学报, 2017, 39(6):131−136.

    Deng X, Kan J M, Li W B. Ergonomics evaluation of knapsack forest-fruit-picking machine[J]. Journal of Beijing Forestry University, 2017, 39(6): 131−136.
    [6]
    齐文超, 李彦明, 陶建峰, 等. 丘陵山地拖拉机姿态主动调整系统设计与实验[J]. 农业机械学报, 2019, 50(7):381−388. doi: 10.6041/j.issn.1000-1298.2019.07.042.

    Qi W C, Li Y M, Tao J F, et al. Design and experiment of active attitude adjustment system for hilly area tractors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 381−388. doi: 10.6041/j.issn.1000-1298.2019.07.042.
    [7]
    齐文超, 李彦明, 张锦辉, 等. 丘陵山地拖拉机车身调平双闭环模糊PID控制方法[J]. 农业机械学报, 2019, 50(10):17−23, 34. doi: 10.6041/j.issn.1000-1298.2019.10.002.

    Qi W C, Li Y M, Zhang J H, et al. Double closed loop fuzzy pid control method of tractor body leveling on hilly and mountainous areas[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 17−23, 34. doi: 10.6041/j.issn.1000-1298.2019.10.002.
    [8]
    周浩, 胡炼, 罗锡文, 等. 旋耕机自动调平系统设计与试验[J]. 农业机械学报, 2016, 47(增刊 1):117−123.

    Zhou H, Hu L, Luo X W, et al. Design and experiment on auto leveling system of rotary tiller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(Suppl. 1): 117−123.
    [9]
    胡炼, 林潮兴, 罗锡文, 等. 农机具自动调平控制系统设计与试验[J]. 农业工程学报, 2015, 31(8):15−20.

    Hu L, Lin C X, Luo X W, et al. Design and experiment on auto leveling control system of agricultural implements[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(8): 15−20.
    [10]
    李钊, 樊桂菊, 张昊, 等. 农机具自动调平现状及趋势分析[J]. 中国农机化学报, 2019, 40(4):48−53.

    Li Z, Fan G J, Zhang H, et al. Analysis on the present situation and tendency of automatic leveling in agricultural machinery[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(4): 48−53.
    [11]
    刘大为, 谢方平, 李旭, 等. 果园采摘平台行走机构的研究现状及发展趋势[J]. 农机化研究, 2013, 35(2):249−252. doi: 10.3969/j.issn.1003-188X.2013.02.061.

    Liu D W, Xie F P, Li X, et al. Research status and development trend of running gear in orchard picking platform[J]. Journal of Agricultural Mechanization Research, 2013, 35(2): 249−252. doi: 10.3969/j.issn.1003-188X.2013.02.061.
    [12]
    Lee S S, Kim J T, Park W Y. Structural analysis for the development of a vertically raise type aerial work machinery[J]. The Journal of Korea Institute of Information, Electronics, and Communication Technology, 2017, 10(3): 225−231. doi: 10.17661/jkiiect.2017.10.3.225
    [13]
    Lee S S, Kim J T, Park W Y. Development of centralized controller with remote control and hydraulic lift[J]. The Journal of Korea Institute of Information, Electronics, and Communication Technology, 2017, 10(3): 232−241. doi: 10.17661/jkiiect.2017.10.3.232
    [14]
    刘丽星, 刘洪杰, 裴晓康. 果园作业平台现状及发展趋势[J]. 现代农业科技, 2020(5):154−156, 163. doi: 10.3969/j.issn.1007-5739.2020.05.096

    Liu L X, Liu H J, Pei X K. Current situation and development trend of orchard work platform[J]. Modern Agricultural Science and Technology, 2020(5): 154−156, 163. doi: 10.3969/j.issn.1007-5739.2020.05.096
    [15]
    刘西宁, 朱海涛, 巴合提. 牧神LG–1型多功能果园作业机的研制[J]. 新疆农机化, 2009, 30(1):42−44. doi: 10.3969/j.issn.1007-7782.2009.01.021

    Liu X N, Zhu H T, Baheti. Development of Mushen LG-1 multifunctional orchard working machine[J]. Xinjiang Agricultural Mechanization, 2009, 30(1): 42−44. doi: 10.3969/j.issn.1007-7782.2009.01.021
    [16]
    崔志超, 管春松, 陈永生, 等. 温室用小型多功能电动履带式作业平台设计[J]. 农业工程学报, 2019, 35(9):48−57. doi: 10.11975/j.issn.1002-6819.2019.09.006.

    Cui Z C, Guan C S, Chen Y S, et al. Design of small multi-functional electric crawler platform for greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(9): 48−57. doi: 10.11975/j.issn.1002-6819.2019.09.006.
    [17]
    Fan G J, Wang Y Z, Zhang X H. Development and experiment of lifting platform for orchards in hilly area[J]. Applied Mechanics and Materials, 2017, 865: 111−117. doi: 10.4028/www.scientific.net/AMM.865.111.
    [18]
    樊桂菊, 王永振, 张晓辉, 等. 果园升降平台自动调平控制系统设计与试验[J]. 农业工程学报, 2017, 33(11):38−46. doi: 10.11975/j.issn.1002-6819.2017.11.005.

    Fan G J, Wang Y Z, Zhang X H, et al. Design and experiment of automatic leveling control system for orchards lifting platform[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 38−46. doi: 10.11975/j.issn.1002-6819.2017.11.005.
    [19]
    刘大为, 谢方平, 李旭, 等. 小型果园升降作业平台的设计与试验[J]. 农机工程学报, 2015, 31(3):113−121.

    Liu D W, Xie F P, Li X, et al. Design and experiment of small lifting platform in orchard[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3): 113−121.
    [20]
    王小龙, 谢方平, 刘大为, 等. 果园升降平台调平装置的设计[J]. 湖南农业大学学报, 2014, 40(5):548−551.

    Wang X L, Xie F P, Liu D W, et al. Design and experiment of the leveling device of the orchard lifting platform[J]. Journal of Hunan Agricultural University, 2014, 40(5): 548−551.
    [21]
    Duan Z H, Qiu W, Ding W M, et al. Tilting stability analysis and experiment of the 3-DOF lifting platform for hilly orchards[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(6): 73−80. doi: 10.25165/j.ijabe.20181106.3523.
    [22]
    袁文龙, 李明远, 滕新素, 等. 现代新型苹果园适度规模化建园技术标准[J]. 河北农业, 2019(3):48−50.

    Yuan W L, Li M Y, Teng X S, et al. Modern new apple orchard moderately large-scale construction technology standards[J]. Hebei Agriculture, 2019(3): 48−50.
    [23]
    Tian H Y, Zhang Z Y. Design and simulation based on Pro/E for a hydraulic lift platform in scissors type[J]. Procedia Engineering, 2011, 16: 772−781. doi: 10.1016/j.proeng.2011.08.1153.
    [24]
    刘俊谊, 杨刚, 张万军, 等. 剪叉式提升机构受力特性分析[J]. 解放军理工大学学报(自然科学版), 2014, 15(2):133−138.

    Liu J Y, Yang G, Zhang W J, et al. Force analysis of scissor lift mechanisms[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2014, 15(2): 133−138.
    [25]
    国家技术监督局. 中国成年人人体尺寸: GB10000—1988[S]. 北京: 中国标准化与信息分类编码研究所, 1988.

    State Bureau of Technical Supervision. Human dimensions of Chinese adults: GB10000−1988[S]. Beijing: China National Institute of Standardization, 1988.
    [26]
    李四伟. 基于虚位移原理和有限元仿真的剪叉机构优化[J]. 机械工程师, 2017(3):117−118. doi: 10.3969/j.issn.1002-2333.2017.03.053.

    Li S W. Fork mechanism optimization based on virtual displacement principle and finite meta simulation[J]. Mechanical Engineer, 2017(3): 117−118. doi: 10.3969/j.issn.1002-2333.2017.03.053.
    [27]
    许益民. 电液比例控制系统分析与设计[M]. 北京: 机械工业出版社, 2005.

    Xu Y M. Analysis and design of electro-hydraulic proportional control system[M]. Beijing: China Machine Press, 2005.
    [28]
    Eryilmaz B, Wilson B H. Unified modeling and analysis of a proportional valve[J]. Journal of the Franklin Institute, 2005, 343(1): 48−68.
    [29]
    张兵, 邓子龙. 基于Simulink的比例阀控液压缸的建模与仿真[J]. 机械制造与自动化, 2016, 45(3):105−108. doi: 10.3969/j.issn.1671-5276.2016.03.032.

    Zhang B, Deng Z L. Simulink based modeling and simulation of the proportional valve controlled cylinder hydraulic system[J]. Machine Building & Automation, 2016, 45(3): 105−108. doi: 10.3969/j.issn.1671-5276.2016.03.032.
    [30]
    郭洪波, 水涌涛, 李磊, 等. 阀控液压缸动力机构通用传递函数建模与分析[J]. 液压气动与密封, 2018, 38(2):22−25. doi: 10.3969/j.issn.1008-0813.2018.02.006.

    Guo H B, Shui Y T, Li L, et al. The general transfer function modeling and analysis of the valve-controlled hydraulic cylinder power mechanism[J]. Hydraulics Pneumatics and Seals, 2018, 38(2): 22−25. doi: 10.3969/j.issn.1008-0813.2018.02.006.
    [31]
    胡寿松. 自动控制原理[M]. 北京: 科学出版社, 2007.

    Hu S S. Principle of automatic control[M]. Beijing: Science Press, 2007.
    [32]
    吕广明. 工程机械智能化技术[M]. 北京: 中国电力出版社, 2007.

    Lü G M. Intelligent technology of engineering machinery[M]. Beijing: China Electric Power Press, 2007.
  • Related Articles

    [1]Wang Yuning, Feng Tianjiao, Sun Long, Liu Xiru, Liu Yabo, Wang Ping. Differences and influencing factors of understory vegetation species diversity between typical plantations and natural forests in the loess area of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240228
    [2]Zhang Zixuan, Meng Xiaoqian, Zhang Xinna, Xu Chengyang, Chen Tao, Wang Wenxue, Ning Qiuling. Responses of phyllosphere microbial communities in understory vegetation under plant life form and light intensity[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20250088
    [3]Gao Minglei, Man Xiuling, Duan Beixing. Short-term effects of understory vegetation and litter on soil CO2 flux of natural forests in cold temperate zone of China[J]. Journal of Beijing Forestry University, 2021, 43(3): 55-65. DOI: 10.12171/j.1000-1522.20200249
    [4]Jiang Jun, Liu Xianzhao, Jia Hongyan, Ming Angang, Chen Beibei, Lu Yuanchang. Effects of stand density on understory species diversity and soil physicochemical properties after close-to-nature transformation management of Chinese fir plantation[J]. Journal of Beijing Forestry University, 2019, 41(5): 170-177. DOI: 10.13332/j.1000-1522.20190022
    [5]Wei Anqi, Wei Tianxing, Liu Haiyan, Wang Sha. PLFA analysis of soil microorganism under Robinia pseudoacacia and Pinus tabuliformis plantation in loess area[J]. Journal of Beijing Forestry University, 2019, 41(4): 88-98. DOI: 10.13332/j.1000-1522.20180287
    [6]SUN Cao-wen, JIA Li-ming, YE Hong-lian, GAO Yuan, XIONG Chen-yan, WENG Xue-huang. Geographic variation evaluating and correlation with fatty acid composition of economic characters of Sapindus spp. fruits.[J]. Journal of Beijing Forestry University, 2016, 38(12): 73-83. DOI: 10.13332/j.1000-1522.20160143
    [7]LIU Hai-yan, WEI Tian-xing, WANG Xian. Soil microbial community structure and functional diversity in typical plantations marked by PLFA in hilly loess region[J]. Journal of Beijing Forestry University, 2016, 38(1): 28-35. DOI: 10.13332/j.1000--1522.20150262
    [8]ZHOU Xiao-jing, LI Ke, FAN Hang, LIU Tong, LI Chun-fang, MA Chao, LIU Yu-jun. Composition and amounts of fatty acids in Perilla frutescens seed oils of different varieties and areas.[J]. Journal of Beijing Forestry University, 2015, 37(1): 98-114. DOI: 10.13332/j.cnki.jbfu.2015.01.005
    [9]LI Guo-lei, LIU Yong, L Rui-heng, YU Hai-qun, LI Rui-sheng. Responses of understory vegetation development to regulation of tree density in Larix principisrupprechtii plantations.[J]. Journal of Beijing Forestry University, 2009, 31(1): 19-24.
    [10]LU Shao-wei, WANG Xiong-bin1, YU Xin-xiao1, LU Shao-bo1, 3, LI Jin-hai4, WU Jun4. Influence of closing hillsides on vegetation diversity restoration in artificial coniferous forests.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 121-126.
  • Cited by

    Periodical cited type(22)

    1. 陈子川,潘国营,陈灿,徐云鹏,林晗,陈煜,谢安强,范海兰. 光强对木麻黄幼苗根系形态、解剖结构及其碳氮含量的影响. 生态学报. 2024(10): 4377-4387 .
    2. 陈静航,叶蕊蕊,孙建喜,罗利华,李灿,吴勇,胡田田. 滴灌施肥周期和毛管布设方式对苹果树细根直径时空分布的影响. 干旱地区农业研究. 2023(01): 101-110 .
    3. 吴小健,李秉钧,颜耀,李明,吴鹏飞,马祥庆. 不同种源杉木细根解剖性状的差异分析. 森林与环境学报. 2023(03): 232-239 .
    4. 吴义远,董文渊,浦婵,钟欢,夏莉,袁翎凌,陈新. 土壤水分和养分对筇竹竹鞭解剖特征及其适应可塑性的影响. 竹子学报. 2023(01): 1-10 .
    5. 张家豪,王根绪,王文志,孙守琴. 大气氮沉降增加对树木生长和水碳利用的影响. 西部林业科学. 2023(03): 145-151+159 .
    6. 韩梦豪,李俊杰,王磊,刘晴廙,关庆伟. 间伐对马尾松不同根序细根化学组分的影响. 森林与环境学报. 2023(04): 337-345 .
    7. 张玉慧,谢芳,闫国永. 不同乔木树种根系养分吸收策略的维度性差异. 林业科技. 2023(04): 16-22 .
    8. 刘逸潇,王传宽,上官虹玉,臧妙涵,梁逸娴,全先奎. 兴安落叶松不同径级根碳氮磷钾化学计量特征的种源差异. 应用生态学报. 2023(07): 1797-1805 .
    9. 周诚,刘彤,王庆贵,韩士杰. 长期氮添加对阔叶红松林细根形态、解剖结构和化学组分的影响. 北京林业大学学报. 2022(11): 31-40 . 本站查看
    10. 郝龙飞,郝文颖,刘婷岩,张敏,许吉康,斯钦毕力格. 氮添加及接种处理对1年生樟子松苗木根系形态及养分含量的影响. 北京林业大学学报. 2021(04): 1-7 . 本站查看
    11. 焦海珍,邵陈禹,陈建姣,张晨禹,陈佳豪,李云飞,沈程文. 重度遮阴及复光条件下茶树根系的生理响应及抗氧化酶活性动态变化. 茶叶科学. 2021(05): 695-704 .
    12. 洪梓明,邢亚娟,闫国永,张军辉,王庆贵. 长白山白桦山杨次生林细根形态特征和解剖结构对氮沉降的响应. 生态学报. 2020(02): 608-620 .
    13. 吴义远,董文渊,刘培,张孟楠,谢泽轩,田发坤. 不同土壤水分和养分条件下筇竹竹秆解剖特征及其适应可塑性. 北京林业大学学报. 2020(04): 80-90 . 本站查看
    14. 李秉钧,颜耀,王小虎,孙雪莲,马祥庆. 环境因子对林木细根功能性状的影响研究进展. 福建林业科技. 2020(02): 125-132 .
    15. 张俪予,张军辉,张蕾,陈伟,韩士杰. 兴安落叶松和白桦细根形态对环境变化的响应. 北京林业大学学报. 2019(06): 15-23 . 本站查看
    16. 陈旭,刘洪凯,赵春周,王强,王延平. 山东滨海盐碱地11个造林树种叶解剖特征对土壤条件的响应. 植物生态学报. 2019(08): 697-708 .
    17. 杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 北方园艺. 2018(17): 82-89 .
    18. 王建宇,胡海清,邢亚娟,闫国永,王庆贵. 大兴安岭兴安落叶松林树木生物量对氮沉降的响应. 林业科学研究. 2018(03): 88-94 .
    19. 杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 内蒙古农业大学学报(自然科学版). 2018(03): 1-7 .
    20. 钟悦鸣,董芳宇,王文娟,王健铭,李景文,吴波,贾晓红. 不同生境胡杨叶片解剖特征及其适应可塑性. 北京林业大学学报. 2017(10): 53-61 . 本站查看
    21. 毛晋花,邢亚娟,马宏宇,王庆贵. 氮沉降对植物生长的影响研究进展. 中国农学通报. 2017(29): 42-48 .
    22. 张鑫,邢亚娟,贾翔,王庆贵. 北方森林细根对氮沉降和二氧化碳浓度升高的响应. 中国农学通报. 2017(30): 84-90 .

    Other cited types(33)

Catalog

    Article views (2143) PDF downloads (91) Cited by(55)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return