• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Hui, Wang Jian, Yang Yujing, Chen Lin, Liu Shirong. Effects of throughfall reduction on soil organic carbon concentration and chemical compositions in the Castanopsis hystrix plantation[J]. Journal of Beijing Forestry University, 2022, 44(10): 102-111. DOI: 10.12171/j.1000-1522.20220191
Citation: Wang Hui, Wang Jian, Yang Yujing, Chen Lin, Liu Shirong. Effects of throughfall reduction on soil organic carbon concentration and chemical compositions in the Castanopsis hystrix plantation[J]. Journal of Beijing Forestry University, 2022, 44(10): 102-111. DOI: 10.12171/j.1000-1522.20220191

Effects of throughfall reduction on soil organic carbon concentration and chemical compositions in the Castanopsis hystrix plantation

More Information
  • Received Date: May 17, 2022
  • Revised Date: June 10, 2022
  • Available Online: June 24, 2022
  • Published Date: October 24, 2022
  •   Objective  Under the background of the change of precipitation pattern caused by global warming, the study of the impact of throughfall reduction (rain reduction) on soil organic carbon (SOC) concentration and chemical composition of Castanopsis hystrix plantations in the southern subtropical region was carried out, and it will provide a scientific basis for accurately predicting the potential impact of climate change on the SOC sequestration function of plantation ecosystem.
      Method  In 2012, in the Guangxi Youyiguan Forest Ecosystem Research Station, three throughfall reduction treatment sample plots and three control sample plots were randomly selected in a 29 years old C. hystrix plantation, each sample plot was 20 m × 20 m. In the sixth year of throughfall reduction treatment, the SOC concentration and chemical composition, total amount and components of litter, fine root biomass, soil microbial biomass and functional gene abundance in dry season (samplings in March) and wet season (samplings in July) were measured, respectively. The effects of throughfall reduction on SOC concentration and chemical stability were analyzed.
      Result  (1) Throughfall reduction significantly decreased soil water content in dry season and fine root biomass in dry and wet season, but there were no differences in the total litter, litter components and soil microbial biomass in dry and wet seasons. (2) In the dry season, throughfall reduction significantly reduced the soil alkyl C and alkyl C/O-alkyl C, but significantly increased the soil aromatic C and aromatic C/alkyl C. In the wet season, throughfall reduction had no effect on SOC concentration and chemical compositions. (3) Litterfall played a major role in the change of chemical compositions of SOC.
      Conclusion  After six years of throughfall reduction treatment, although the content of SOC doesn’t change significantly, the proportion of soil alkyl C with high stability decreases and the aromatization degree of SOC is improved in dry season. Therefore, the projected precipitation reduction scenario may reduce the chemical stability of SOC in C. hystrix plantations in the southern subtropical region.
  • [1]
    Dai A. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2012, 3(1): 52−58. doi: 10.1038/nclimate1633
    [2]
    Trenberth K E. Changes in precipitation with climate change[J]. Climate Research, 2011, 47(1): 123−138. doi: 10.3354/cr00953
    [3]
    IPCC. Climate change 2021: the physical science basis. contribution of working group Ⅰ to the sixth assessment report of the intergovernmental panel on climate change[J]. Cambridge: Cambridge University Press, 2021.
    [4]
    Yu G, Chen Z, Piao S, et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region[J]. Proceedings of the National Academy of Science, 2014, 111(13): 4910−4915. doi: 10.1073/pnas.1317065111
    [5]
    Yu G R, Zhu X J, Fu Y L, et al. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China[J]. Global Change Biology, 2013, 19(3): 798−810. doi: 10.1111/gcb.12079
    [6]
    Yu G R, Zheng Z M, Wang Q F, et al. Spatiotemporal pattern of soil respiration of terrestrial ecosystems in China: the development of a geostatistical model and its simulation[J]. Environmental Science and Technology, 2010, 44(16): 6074−6080. doi: 10.1021/es100979s
    [7]
    刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展[J]. 生态学报, 2011, 31(19): 5437−5448.

    Liu S R, Wang H, Luan J W. A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China[J]. Acta Ecologica Sinica, 2011, 31(19): 5437−5448.
    [8]
    Crow S E, Lajtha K, Filley T R, et al. Sources of plant-derived carbon and stability of organic matter in soil: implications for global change[J]. Global Change Biology, 2009, 15(8): 2003−2019. doi: 10.1111/j.1365-2486.2009.01850.x
    [9]
    Margenot A J, Calderón F J, Bowles T M, et al. Soil organic matter functional group composition in relation to organic carbon, nitrogen, and phosphorus fractions in organically managed tomato fields[J]. Soil Science Society of America Journal, 2015, 79(3): 772−782. doi: 10.2136/sssaj2015.02.0070
    [10]
    Lorenz K, Lal R. Stabilization of organic carbon in chemically separated pools in reclaimed coal mine soils in Ohio[J]. Geoderma, 2007, 141(3−4): 294−301.
    [11]
    Baldock J A, Oades J M, Waters A G, et al. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy[J]. Biogeochemistry, 1992, 16(1): 1−42. doi: 10.1007/BF02402261
    [12]
    Lorenz K, Lal R, Preston C M, et al. Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio (macro) molecules[J]. Geoderma, 2007, 142(1−2): 1−10. doi: 10.1016/j.geoderma.2007.07.013
    [13]
    Marco A D, Spaccini R, Vittozzi P, et al. Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy[J]. Soil Biology and Biochemistry, 2012, 51: 1−15. doi: 10.1016/j.soilbio.2012.03.025
    [14]
    Chang J, Zhu J, Xu L, et al. Rational land-use types in the karst regions of China: insights from soil organic matter composition and stability[J]. Catena, 2018, 160: 345−353. doi: 10.1016/j.catena.2017.09.029
    [15]
    Chen C R, Xu Z H, Mathers N J. Soil carbon pools in adjacent natural and plantation forests of subtropical Australia[J]. Soil Science Society of America Journal, 2004, 68(1): 282−291. doi: 10.2136/sssaj2004.2820
    [16]
    Huang Z, Xu Z, Chen C, et al. Changes in soil carbon during the establishment of a hardwood plantation in subtropical Australia[J]. Forest Ecology and Management, 2008, 254(1): 46−55. doi: 10.1016/j.foreco.2007.07.021
    [17]
    Kögel-Knabner I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter[J]. Soil Biology and Biochemistry, 2002, 34(2): 139−162. doi: 10.1016/S0038-0717(01)00158-4
    [18]
    Zhu E, Liu T, Zhou L, et al. Leaching of organic carbon from grassland soils under anaerobiosis[J]. Soil Biology and Biochemistry, 2019, 141: 107684. doi: 10.1016/j.soilbio.2019.107684
    [19]
    Cusack D F, Halterman S M, Tanner E V J, et al. Decadal-scale litter manipulation alters the biochemical and physical character of tropical forest soil carbon[J]. Soil Biology and Biochemistry, 2018, 124: 199−209. doi: 10.1016/j.soilbio.2018.06.005
    [20]
    Deng L, Peng C, Kim D G, et al. Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems[J/OL]. Earth Science Reviews, 2021, 214: 103501[2022−05−01]. https://doi.org/10.1016/j.earscirev.2020.103501.
    [21]
    Canarini A, Kiær L P, Dijkstra F A. Soil carbon loss regulated by drought intensity and available substrate: a meta-analysis[J]. Soil Biology and Biochemistry, 2017, 112: 90−99. doi: 10.1016/j.soilbio.2017.04.020
    [22]
    Su X, Su X L, Yang S, et al. Drought changed soil organic carbon composition and bacterial carbon metabolizing patterns in a subtropical evergreen forest[J/OL]. Science of the Total Environment, 2020, 736: 139568[2022−05−01]. doi: 10.1016/j.scitotenv.2020.139568.
    [23]
    Su X I, Su X, Zhou G Y, et al. Drought accelerated recalcitrant carbon loss by changing soil aggregation and microbial communities in a subtropical forest[J/OL]. Soil Biology and Biochemistry, 2020, 148: 107898[2022−05−01]. https://doi.org/10.1016/j.soilbio.2020.107898.
    [24]
    Olesinski J, Lavigne M B, Krasowski M J. Effects of soil moisture manipulations on fine root dynamics in a mature balsam fir (Abies balsamea L. Mill.) forest[J]. Tree Physiolology, 2011, 31(3): 339−348. doi: 10.1093/treephys/tpr006
    [25]
    Moser G, Schuldt B, Hertel D, et al. Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought[J]. Global Change Biology, 2014, 20(5): 1481−1497. doi: 10.1111/gcb.12424
    [26]
    尹华军, 张子良, 刘庆. 森林根系分泌物生态学研究: 问题与展望[J]. 植物生态学报, 2018, 42(11): 1055−1070. doi: 10.17521/cjpe.2018.0156

    Yin H J, Zhang Z L, Liu Q. Root exudates and their ecological consequences in forest ecosystems: problems and perspective[J]. Chinese Journal of Plant Ecology, 2018, 42(11): 1055−1070. doi: 10.17521/cjpe.2018.0156
    [27]
    Santonja M, Fernandez C, Gauquelin T, et al. Climate change effects on litter decomposition: intensive drought leads to a strong decrease of litter mixture interactions[J]. Plant and Soil, 2015, 393(1−2): 69−82. doi: 10.1007/s11104-015-2471-z
    [28]
    Hoover D L, Rogers B M. Not all droughts are created equal: the impacts of interannual drought pattern and magnitude on grassland carbon cycling[J]. Global Change Biology, 2016, 22(5): 1809−1820. doi: 10.1111/gcb.13161
    [29]
    Fest B, Hinko-Najera N, von Fischer J C, et al. Soil methane uptake increases under continuous throughfall reduction in a temperate evergreen, broadleaved Eucalypt forest[J]. Ecosystems, 2016, 20(2): 368−379. doi: 10.1007/s10021-016-0030-y
    [30]
    Ren C, Chen J, Lu X, et al. Responses of soil total microbial biomass and community compositions to rainfall reductions[J]. Soil Biology and Biochemistry, 2018, 116: 4−10. doi: 10.1016/j.soilbio.2017.09.028
    [31]
    Ren C, Zhao F, Shi Z, et al. Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation[J]. Soil Biology and Biochemistry, 2017, 115: 1−10. doi: 10.1016/j.soilbio.2017.08.002
    [32]
    卢立华, 贾宏炎, 农友, 等. 红椎经营模式对林木生长及乔木层碳储量的影响[J]. 东北林业大学学报, 2014, 42(12): 63−66, 74. doi: 10.13759/j.cnki.dlxb.20141210.008

    Lu L H, Jia H Y, Nong Y, et al. Efects of stand management patterns of castanopsis hystrix on tree growth and carbon storage capacit[J]. Journal of Northeast Forestry University, 2014, 42(12): 63−66, 74. doi: 10.13759/j.cnki.dlxb.20141210.008
    [33]
    赵总, 贾宏炎, 蔡道雄, 等. 红椎天然更新及其影响因子研究[J]. 北京林业大学学报, 2018, 40(11): 76−83. doi: 10.13332/j.1000-1522.20180190

    Zhao Z, Jia H Y, Cai D X, et al. Natural regeneration aild its influencing factors of Castanopsis hystri[J]. Journal of Beijing Forestry University, 2018, 40(11): 76−83. doi: 10.13332/j.1000-1522.20180190
    [34]
    杨予静, 刘世荣, 陈琳, 等. 模拟降雨减少对马尾松人工林凋落物量及其化学性质的短期影响[J]. 生态学报, 2018, 38(13): 4770−4778. doi: 10.5846/stxb201708021385

    Yang Y J, Liu S R, Chen L, et al. Short-term effects of manipulated throughfall reduction on the quantity and quality of litterfall in a Pinus massoniana plantation[J]. Acta Ecologica Sinica, 2018, 38(13): 4770−4778. doi: 10.5846/stxb201708021385
    [35]
    Eze S, Palmer S M, Chapman P J. Soil organic carbon stock and fractional distribution in upland grasslands[J]. Geoderma, 2018, 314: 175−183. doi: 10.1016/j.geoderma.2017.11.017
    [36]
    Stockmann U, Adams M A, Crawford J W, et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon[J]. Agriculture, Ecosystems and Environment, 2013, 164: 80−99. doi: 10.1016/j.agee.2012.10.001
    [37]
    Zhang Y, Yao S, Mao J, et al. Chemical composition of organic matter in a deep soil changed with a positive priming effect due to glucose addition as investigated by 13C NMR spectroscopy[J]. Soil Biology and Biochemistry, 2015, 85: 137−144. doi: 10.1016/j.soilbio.2015.03.013
    [38]
    Wang H, Liu S R, Song Z C, et al. Introducing nitrogen-fixing tree species and mixing with Pinus massoniana alters and evenly distributes various chemical compositions of soil organic carbon in a planted forest in southern China[J/OL]. Forest Ecology and Management, 2019, 449: 117477[2022−05−01]. https://doi.org/10.1016/j.foreco.2019.117477.
    [39]
    Schmidt M W I, Knicker H, Hatcher P G, et al. Improvement of 13C and 15N CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10% hydrofluoric acid[J]. European Journul of Soil Science, 1997, 48: 319−329. doi: 10.1111/j.1365-2389.1997.tb00552.x
    [40]
    Solomon D, Lehmann J, Kinyangi J, et al. Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems[J]. Global Change Biology, 2007, 13(2): 511−530. doi: 10.1111/j.1365-2486.2006.01304.x
    [41]
    Brookes P C, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen a rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry, 1985, 17(6): 837−842. doi: 10.1016/0038-0717(85)90144-0
    [42]
    Yakimov M M, Cono V L, Denaro R, et al. Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L ’Atalante, Eastern Mediterranean Sea[J]. The ISME Journal, 2007, 1(8): 743−755. doi: 10.1038/ismej.2007.83
    [43]
    杜琳垚, 刘千慧, 申璇璇, 等. 降雨减少对油松人工林凋落叶分解的影响[J]. 北京林业大学学报, 2020, 42(7): 68−76. doi: 10.12171/j.1000-1522.20190211

    Du L Y, Liu Q H, Shen X X, et al. Effects of rainfall reduction on litter leaf decomposition of Pinus tabuliformis plantation[J]. Journal of Beijing Forestry University, 2020, 42(7): 68−76. doi: 10.12171/j.1000-1522.20190211
    [44]
    Nie X Q, Wang D, Yang L, et al. Storage and climatic controlling factors of litter standing crop carbon in the shrublands of the Tibetan Plateau[J]. Forests, 2019, 10(11): 987. doi: 10.3390/f10110987
    [45]
    Wang H, Liu S R, Chang S X, et al. Soil microbial community composition rather than litter quality is linked with soil organic carbon chemical composition in plantations in subtropical China[J]. Journal of Soils and Sediments, 2015, 15(5): 1094−1103. doi: 10.1007/s11368-015-1118-2
    [46]
    Zhou X, Zhou L, Nie Y, et al. Similar responses of soil carbon storage to drought and irrigation in terrestrial ecosystems but with contrasting mechanisms: a meta-analysis[J]. Agriculture, Ecosystems and Environment, 2016, 228: 70−81. doi: 10.1016/j.agee.2016.04.030
    [47]
    Li Y, Nie C, Liu Y, et al. Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland[J]. Science of the Total Environment, 2019, 654: 264−274. doi: 10.1016/j.scitotenv.2018.11.031
    [48]
    Fu W, Chen B, Jansa J, et al. Contrasting community responses of root and soil dwelling fungi to extreme drought in a temperate grassland[J/OL]. Soil Biology and Biochemistry, 2022, 169: 108670[2022−05−01]. https://doi.org/10.1016/j.soilbio.2022.108670.
    [49]
    Xi N, Chen D, Bahn M, et al. Drought soil legacy alters drivers of plant diversity-productivity relationships in oldfield systems[J/OL]. Science Advances, 2022, 8(18): eabn3368[2022−05−01]. https://doi.org/10.1126/sciadv.abn3368.
    [50]
    Chen X, Su Y, He X, et al. Comparative analysis of basidiomycetous laccase genes in forest soils reveals differences at the cDNA and DNA levels[J]. Plant and Soil, 2013, 366(1−2): 321−331. doi: 10.1007/s11104-012-1440-z
    [51]
    Baldrian P. Wood-inhabiting ligninolytic basidiomycetes in soils: Ecology and constraints for applicability in bioremediation[J]. Fungal Ecology, 2008, 1(1): 4−12. doi: 10.1016/j.funeco.2008.02.001
    [52]
    Hättenschwiler S, Tiunov A V, Scheu S. Biodiversity and litter decomposition in terrestrial ecosystems[J]. Annual Review of Ecology Evolution and Systematics, 2005, 36(1): 191−218. doi: 10.1146/annurev.ecolsys.36.112904.151932
    [53]
    Martinez D, Challacombe J, Morgenstern I, et al. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion[J]. Proceedings of the National Academy of Sciences, 2009, 106(6): 1954−1959. doi: 10.1073/pnas.0809575106
    [54]
    Yang Y J, Liu S R, Wang H, et al. Reduction in throughfall reduces soil aggregate stability in two subtropical plantations[J]. European Journal of Soil Science, 2018, 70(2): 301−310. doi: 10.1111/ejss.12734
    [55]
    Yang Y, Liu S, Schindlbacher A, et al. Topsoil organic carbon increases but its stability declines after five years of reduced throughfall [J/OL]. Soil Biology and Biochemistry, 2021, 156: 108221[2022−05−01]. https://doi.org/10.1016/j.soilbio.2021.108221.
    [56]
    Wang H, Liu S R, Schindlbacher A, et al. Experimental warming reduced topsoil carbon content and increased soil bacterial diversity in a subtropical planted forest[J]. Soil Biology and Biochemistry, 2019, 133: 155−164. doi: 10.1016/j.soilbio.2019.03.004
    [57]
    Sun S Q, Wu Y H, Zhang J, et al. Soil warming and nitrogen deposition alter soil respiration, microbial community structure and organic carbon composition in a coniferous forest on eastern Tibetan Plateau[J]. Geoderma, 2019, 353: 283−292. doi: 10.1016/j.geoderma.2019.07.023
    [58]
    Li F, Peng Y, Chen L, et al. Warming alters surface soil organic matter composition despite unchanged carbon stocks in a Tibetan permafrost ecosystem[J]. Functional Ecology, 2020, 34(4): 911−922. doi: 10.1111/1365-2435.13489
  • Related Articles

    [1]Liu Fangni, Yin Hao, Liu Zhiruo. Impact of greening around residential buildings on winter sunlight in Beijing[J]. Journal of Beijing Forestry University, 2024, 46(2): 114-122. DOI: 10.12171/j.1000-1522.20230056
    [2]Wang-Ren Zhongyuan, Zhang Shouhong, Zhang Sunxun, Yan Jing, Yang Hang, Wang Kai, Zhang Chengyu, Wei Liangyi. Effects of plant roots on the regulating function of green roof runoff[J]. Journal of Beijing Forestry University, 2023, 45(6): 108-116. DOI: 10.12171/j.1000-1522.20220274
    [3]Du Tiantian, Sun Xiangyang, Li Suyan, Zhou Wei, Zheng Yi, Fan Zhihui. Effects of landscaping waste mulching on soil fertility of urban green space[J]. Journal of Beijing Forestry University, 2021, 43(10): 110-117. DOI: 10.12171/j.1000-1522.20200402
    [4]Feng Xiaojie, Liu Guoliang, Zhang Wei, Sun Xiangyang, Li Suyan, Yan Subo. Effects of green waste compost on soil organic carbon fractions[J]. Journal of Beijing Forestry University, 2021, 43(7): 120-127. DOI: 10.12171/j.1000-1522.20210035
    [5]Zhang Deshun, Chen-Lu Qiyao, Xue Kaihua, Wang Zhen, Yao Chiyuan, Chen Yijia. Determination and analysis of the relationship between microclimate elements and greening structures in the city streets of Shanghai: taking Xuhui District and Yangpu District as examples[J]. Journal of Beijing Forestry University, 2021, 43(4): 124-131. DOI: 10.12171/j.1000-1522.20170359
    [6]Zhao Na, Li Shaoning, Xu Xiaotian, Wang Weina, Lu Shaowei. Water use efficiency and its influencing factors of typical greening tree species in Beijing region[J]. Journal of Beijing Forestry University, 2021, 43(3): 44-54. DOI: 10.12171/j.1000-1522.20200293
    [7]XIU Yu, WU Guo-dong, CHEN De-zhong, ZHAO Xiao-qing, TANG Wen-si, WANG Hua-fang. Propagation and afforestation techniques of tree peonies for greening and seed oil production[J]. Journal of Beijing Forestry University, 2017, 39(1): 112-118. DOI: 10.13332/j.1000-1522.20160045
    [8]LIU Li-na, XU Cheng-yang, DUAN Yong-hong, ZHOU Rui-zhi, DAI Xiang-yang. Root morphology of three greening conifer species in Beijing[J]. Journal of Beijing Forestry University, 2008, 30(1): 34-39.
    [9]SUI Jin-ling, ZHANG Xiang, HU De-fu, LI Kai, WANG Min-zhong, FU Rui-hai. Relationship between bird communities and environment factors at green belts in the urban area of Beijing[J]. Journal of Beijing Forestry University, 2007, 29(5): 121-126. DOI: 10.13332/j.1000-1522.2007.05.022
    [10]RAO Liang-yi, ZHU Jin-zhao, BI Hua-xing. Hydrological effects of forest litters and soil in the Simian Mountain of Chongqing City.[J]. Journal of Beijing Forestry University, 2005, 27(1): 33-37.
  • Cited by

    Periodical cited type(9)

    1. 张薇,陆晓敏. 海盐乡土树种在城市园林中的应用调查与推广建议. 安徽农学通报. 2023(02): 79-82+96 .
    2. 孙连群,何林洁,黄雪雯. 黔南州乡土植物资源在都匀市旅游景观中的运用. 黔南民族师范学院学报. 2023(03): 106-112+120 .
    3. 饶显龙,何田恬,王冰彦,刘华红,李上善,丁洲,黎家宏,李珏. 浙江舟山群岛彩化植物资源调查及其园林应用评价. 北京林业大学学报. 2022(09): 127-136 . 本站查看
    4. 简兴,鲍嵚,王雪娟. 屋顶绿化研究现状与展望. 世界林业研究. 2021(06): 14-19 .
    5. 刘乐乐,朱亚灵,许宏刚,周德旗,汉梅兰. 兰州市城市绿地木本植物多样性研究. 草原与草坪. 2020(01): 56-62 .
    6. 李荣喜,许雯,黄敏,张怡君,董斌. 广州市高架桥桥荫植物绿化现状及对策. 现代园艺. 2019(10): 148-150 .
    7. 柳泽鑫,吴悦宏,肖泽鑫,陈翠蓉. 潮汕地区居住区乡土植物资源及其应用分析. 防护林科技. 2018(06): 40-42+45 .
    8. 李峰,管志涛. 从建设海绵城市看濮阳市消落区植物景观配置. 濮阳职业技术学院学报. 2018(03): 110-112 .
    9. 李成璋,黄永艺. 海绵城市建设理念下江门主城区园林乡土植物的利用研究. 绿色科技. 2018(21): 49-54 .

    Other cited types(11)

Catalog

    Article views (1019) PDF downloads (153) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return