Citation: | Jin Zhi, Chen Qian, Dai Linxin, Ma Jianfeng. Research progress in macromolecular orientation of lignocellulosic cell wall[J]. Journal of Beijing Forestry University, 2022, 44(12): 153-160. DOI: 10.12171/j.1000-1522.20220215 |
[1] |
江泽慧. 世界竹藤[M]. 沈阳: 辽宁科学技术出版社, 2002.
Jiang Z H. Bamboo and rattan in the world[M]. Shenyang: Liaoning Science and Technology Press, 2002.
|
[2] |
Baskin T I. Plant cell growth: cellulose caught slipping[J]. Nature Plants, 2017, 3(5): 17063. doi: 10.1038/nplants.2017.63
|
[3] |
Berglund J, Mikkelsen D, Flanagan B M, et al. Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks[J]. Nature Communications, 2020, 11(1): 4962. doi: 10.1038/s41467-020-18798-7
|
[4] |
Gao Y, Lipton A S, Wittmer Y, et al. A grass-specific cellulose–xylan interaction dominates in sorghum secondary cell walls[J]. Nature Communications, 2020, 11(1): 6081. doi: 10.1038/s41467-020-19837-z
|
[5] |
孙海燕, 苏明垒, 吕建雄, 等. 细胞壁微纤丝角和结晶区对木材物理力学性能影响研究进展[J]. 西北农林科技大学学报(自然科学版), 2019, 47(5): 50−58. doi: 10.13207/j.cnki.jnwafu.2019.05.007
Sun H Y, Su M L, Lü J X, et al. Research progress on effect of microfibril angle and crystalline area in cell wall on wood physical and mechanical properties[J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(5): 50−58. doi: 10.13207/j.cnki.jnwafu.2019.05.007
|
[6] |
Nishino T, Takano K, Nakamae K. Elastic modulus of the crystalline regions of cellulose polymorphs[J]. Journal of Polymer Science Part B: Polymer Physics, 1995, 33(11): 1647−1651. doi: 10.1002/polb.1995.090331110
|
[7] |
Tanaka F, Iwata T. Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation[J]. Cellulose, 2006, 13(5): 509−517. doi: 10.1007/s10570-006-9068-x
|
[8] |
Gibson L J. The hierarchical structure and mechanics of plant materials[J]. Journal of the Royal Society Interface, 2012, 76(9): 2749−2766. doi: 10.1098/rsif.2012.0341
|
[9] |
Fry S C. The structure and functions of xyloglucan[J]. Journal of Experimental Botany, 1989, 40(1): 1−11. doi: 10.1093/jxb/40.1.1
|
[10] |
Konnerth J, Eiser M, Jäger A, et al. Macro-and micro-mechanical properties of red oak wood (Quercus rubra L.) treated with hemicellulases[J]. Holzforschung, 2010, 64(4): 447−453.
|
[11] |
Silveira R L, Stoyanov S R, Gusarov S, et al. Plant biomass recalcitrance: effect of hemicellulose composition on nanoscale forces that control cell wall strength[J]. Journal of the American Chemical Society, 2013, 135(51): 19048−19051. doi: 10.1021/ja405634k
|
[12] |
Youssefian S, Rahbar N. Molecular origin of strength and stiffness in bamboo fibrils[J]. Scientific Report, 2015, 5(1): 11116. doi: 10.1038/srep11116
|
[13] |
Bergander A, Salmen L J. Cell wall properties and their effects on the mechanical properties of fibers[J]. Materials Science, 2002, 37(1): 151−156.
|
[14] |
Ruggeberg M, Speck T, Paris O, et al. Stiffness gradients in vascular bundles of the palm Washingonia robusta[C]. Proceedings of the Royal Society B: Biological Sciences, 2008, 275(1648): 2221−2229.
|
[15] |
Özparpucu M, Rüggeberg M, Gierlinger N, et al. Unravelling the impact of lignin on cell wall mechanics: a comprehensive study on young poplar trees downregulated for cinnamyl alcohol dehydrogenase (CAD)[J]. The Plant Journal, 2017, 91(3): 480−490. doi: 10.1111/tpj.13584
|
[16] |
Koehler L, Telewski F W. Biomechanics and transgenic wood[J]. American Journal of Botany, 2006, 93(10): 1433−1438. doi: 10.3732/ajb.93.10.1433
|
[17] |
Bjurhager I, Olsso A M, Zhang B, et al. Ultrastructure and mechanical properties of populous wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase[J]. Biomacromolecules, 2010, 11(9): 2359−2365. doi: 10.1021/bm100487e
|
[18] |
Horvath L, Peszlen I, Peralta P, et al. Mechanical properties of genetically engineered young aspen with modified lignin content and/or structure[J]. Wood and Fiber Science: Journal of the Society of Wood Science and Technology, 2010, 42(3): 310−317.
|
[19] |
Salmén L, Burgert I. Cell wall features with regard to mechanical performance. a review[J]. Holzforschung, 2009, 63(2): 121−129.
|
[20] |
Wang J P, Matthews M L, Williams C M, et al. Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis[J]. Nature Communications, 2018, 9(1): 1−16. doi: 10.1038/s41467-017-02088-w
|
[21] |
Iiyama K, Lam T, Stone B A. Covalent cross-links in the cell wall[J]. Plant Physiology, 1994, 104(2): 315−320. doi: 10.1104/pp.104.2.315
|
[22] |
Besombes S, Mazeau K. The cellulose/lignin assembly assessed by molecular modeling (Part 2): seeking for evidence of organization of lignin molecules at the interface with cellulose[J]. Plant Physiology & Biochemistry, 2005, 43(3): 277−286.
|
[23] |
Simmons T J, Mortimer J C, Bernardinelli O D, et al. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR[J]. Nature Communications, 2016, 7(1): 13902. doi: 10.1038/ncomms13902
|
[24] |
Grantham N J, Wurman-Rodrich J, Terrett O M, et al. An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls[J]. Nature Plants, 2017, 3(11): 859−865. doi: 10.1038/s41477-017-0030-8
|
[25] |
Zheng Y, Wang X, Chen Y, et al. Xyloglucan in the primary cell wall: assessment by FESEM, selective enzyme digestions and nanogold affinity tags[J]. The Plant Journal, 2017, 93(2): 211−226.
|
[26] |
Terrett O M, Lyczakowski J J, Yu L, et al. Molecular architecture of softwood revealed by solid-state NMR[J]. Nature Communication, 2019, 10(1): 1−11. doi: 10.1038/s41467-018-07882-8
|
[27] |
Faulon J L, Carlson G A, Hatcher P G. A three-dimensional model for lignocellulose from gymnospermous wood[J]. Organic Geochemistry, 1994, 21(12): 1169−1179. doi: 10.1016/0146-6380(94)90161-9
|
[28] |
Zhao Z, Crespi V H, Kubicki J D, et al. Molecular dynamics simulation study of xyloglucan adsorption on cellulose surfaces: effects of surface hydrophobicity and side-chain variation[J]. Cellulose, 2014, 21(2): 1025−1039. doi: 10.1007/s10570-013-0041-1
|
[29] |
Houtman C J, Atalla R H. Cellulose-lignin interactions: a computational study[J]. Plant Physiology, 1995, 107(3): 977−984. doi: 10.1104/pp.107.3.977
|
[30] |
Atalla R H. Cellulose and the hemicelluloses: patterns for the assembly of lignin[J]. Acs Symposium, 1998, 697: 172−179.
|
[31] |
向松明, 谢益民, 杨海涛, 等. 纤维素前驱物6-13C标记示踪研究纤维素与木质素连接方式[J]. 林产化学与工业, 2014, 34(1): 37−42.
Xiang S M, Xie Y M, Yang H T, et al. Analysis of the association between cellulose and lignin by carbon 13 tracer method with cellulose precursor[J]. Chemistry and Industry of Forest Products, 2014, 34(1): 37−42.
|
[32] |
Charlier L, Mazeau K. Molecular modeling of the structural and dynamical properties of secondary plant cell walls: influence of lignin chemistry[J]. Journal of Physical Chemistry B, 2012, 116(14): 4163−4174. doi: 10.1021/jp300395k
|
[33] |
Kang X, Kirui A, Widanage M C D, et al. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR[J]. Nature Communication, 2019, 10(1): 347. doi: 10.1038/s41467-018-08252-0
|
[34] |
金克霞, 江泽慧, 刘杏娥, 等. 植物细胞壁纤维素纤丝聚集体结构研究进展[J]. 材料导报, 2019, 33(17): 2997−3002.
Jin K X, Jiang Z H, Liu X E, et al. Research advance in cellulose fibril aggregates structure of plant cell wall[J]. Materials Reports, 2019, 33(17): 2997−3002.
|
[35] |
Peng H, Salmén L, Stevanic J S, et al. Structural organization of the cell wall polymers in compression wood as revealed by FTIR microspectroscopy[J]. Planta, 2019, 250(1): 163−171. doi: 10.1007/s00425-019-03158-7
|
[36] |
Salmén L. On the organization of hemicelluloses in the wood cell wall[J]. Cellulose, 2022, 29(3): 1349−1355. doi: 10.1007/s10570-022-04425-9
|
[37] |
Gierlinger N, Luss S, König C, et al. Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging[J]. Journal of Experimental Botany, 2010, 61(2): 587−595. doi: 10.1093/jxb/erp325
|
[38] |
Souza N D, Lima J T, Soares B. Application of X-ray diffraction to assess the microfibril angle of green and dry eucalyptus grandis wood[J]. Trees, 2021(36): 191−197.
|
[39] |
Lian C, Yuan J, Luo J, et al. Microfibril orientation of the secondary cell wall in parenchyma cells of Phyllostachys edulis culms[J]. Cellulose, 2022, 29(4): 3153−3161.
|
[40] |
Ba Z, Chen G, Luo H, et al. In situ SAXS analysis of the water effects on the thickness evolution of nanocellulose within bamboo fiber[J]. Wood Science and Technology, 2021, 55(2): 351−360. doi: 10.1007/s00226-020-01260-8
|
[41] |
Huang S, Makarem M, Kiemle S N, et al. Inhomogeneity of cellulose microfibril assembly inplant cell walls revealed with sum frequency generation microscopy[J]. The Journal of Physical Chemistry B, 2018, 122(19): 5006−5019. doi: 10.1021/acs.jpcb.8b01537
|
[42] |
Donaldson L, Frankland A. Ultrastructure of iodine treated wood[J]. Holzforschung, 2004, 58(3): 219−225. doi: 10.1515/HF.2004.034
|
[43] |
Hu K, Huang Y, Fei B, et al. Investigation of the multilayered structure and microfibril angle of different types of bamboo cell walls at the micro/nano level using a LC-PolScope imaging system[J]. Cellulose, 2017, 24(11): 4611−4625. doi: 10.1007/s10570-017-1447-y
|
[44] |
Song B, Zhao S, Shen W, et al. Direct measurement of plant cellulose microfibril and bundles in native cell walls[J]. Frontiers in Plant Science, 2020, 11(1): 479.
|
[45] |
Ren W, Zhu J, Guo F, et al. Estimating cellulose microfibril orientation in the cell wall sublayers of bamboo through dimensional analysis of microfibril aggregates[J]. Industrial Crops and Products, 2022, 179: 114677.
|
[46] |
Ma J F, Lü X L, Yang S M, et al. Structural insight into cell wall architecture of Miscanthus sinensis cv. using correlative microscopy approaches[J]. Microscopy and Microanalysis, 2015, 21(5): 1−10.
|
[47] |
Stevanic J S, Salmén L. Orientation of the wood polymers in the cell wall of spruce wood fibers[J]. Holzforschung, 2009, 63(5): 497−503.
|
[48] |
Olsson A M, Bjurhager I, Gerber L, et al. Ultra-structural organisation of cell wall polymers in normal and tension wood of aspen revealed by polarisation FTIR microspectroscopy[J]. Planta, 2011, 233(6): 1277−1286. doi: 10.1007/s00425-011-1384-1
|
[49] |
Zhu J W, Ren W T, Guo F, et al. The spatial orientation and interaction of cell wall polymers in bamboo revealed with a combination of imaging polarized FTIR and directional chemical removal[J]. Cellulose, 2022, 29: 3163−3176. doi: 10.1007/s10570-022-04506-9
|
[50] |
Atalla R H, Agarwal U P. Raman microprobe evidence for lignin orientation in the cell walls of native woody tissue[J]. Science, 1985, 227: 636−638. doi: 10.1126/science.227.4687.636
|
[51] |
Agarwal U P, Atalla R H. In situ Raman microprobe studies of plant cell walls: macromolecular organization and compositional variability in the secondary wall of Picea mariana (Mill.) B.S.P[J]. Planta, 1986, 169(3): 325−332. doi: 10.1007/BF00392127
|
[52] |
Ma J F, Zhang Z H, Yang G H, et al. Ultrastructural topochemistry of cell wall polymers in Populus nigra by transmission electron microscopy and Raman imaging[J]. BioResources, 2011, 6(4): 3944−3959.
|
[53] |
Ma J F, Zhou X, Zhang X, et al. Label-Free in situ Raman analysis of opposite and tension wood in Populus nigra[J]. BioResources, 2013, 8(2): 2222−2233.
|
[54] |
Sun L, Singh S, Joo M, et al. Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy[J]. Biotechnology and Bioengineering, 2015, 113(1): 82−90.
|
[55] |
Wang X Q, Ren H Q, Zhang B, et al. Cell wall structure and formation of maturing fibres of moso bamboo (Phyllostachys pubescens) increase buckling resistance[J]. Journal of the Royal Society Interface, 2012, 9: 988−996. doi: 10.1098/rsif.2011.0462
|
[56] |
Wang X Q, Tobias K, Notburga G, et al. Plant material features responsible for bamboo’s excellent mechanical performance: a comparison of tensile properties of bamboo and spruce at the tissue, fiber and cell wall levels[J]. Annals of Botany, 2014, 114(8): 1627−1635. doi: 10.1093/aob/mcu180
|
[57] |
冯龙, 孙存举, 毕文思, 等. 毛竹薄壁细胞组分分布及取向显微成像研究[J]. 光谱学与光谱分析, 2020, 40(9): 2957−2961.
Feng L, Sun C J, Bi W S, et al. The distribution and orientation of cell wall components of moso bamboo parenchyma[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2957−2961.
|
[58] |
冯龙, 金克霞, 刘杏娥, 等. 黄藤细胞壁微纤丝取向偏振光拉曼光谱研究[J]. 光谱学与光谱分析, 2019, 39(9): 2758−2762.
Feng L, Jin K X, Liu X E, et al. Study on microfibrils orientation in Daemonorops jenkinsiana cell wall by polarized laser Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2758−2762.
|
[1] | FU Jing, DAI Si-lan.. Analysis of color phenotypic and pigment contents of chrysanthemum based on hyperspectral imaging.[J]. Journal of Beijing Forestry University, 2016, 38(8): 88-98. DOI: 10.13332/j.1000-1522.20150483 |
[2] | LI Yao-xiang, LI Ying, JIANG Li-chun. Pretreatment of near-infrared spectroscopy of wood based on wavelet compression[J]. Journal of Beijing Forestry University, 2016, 38(3): 89-94. DOI: 10.13332/j.1000-1522.20150299 |
[3] | DU Yu-liang, CHEN Ye, LIU Cai-hong, YIN Zeng-fang. Molecular regulation mechanism of vascular pattern formation in plant[J]. Journal of Beijing Forestry University, 2014, 36(3): 142-150. DOI: 10.13332/j.cnki.jbfu.2014.03.023 |
[4] | LIU Zhen-bo, XUE Zhan-chuan, LIU Yi-xing, WANG Peng, SHEN Xiao-yan, KONG Wen-yang, WANG Xiang-ming. Prediction of holocellulose content of poplar using near infrared spectroscopy.[J]. Journal of Beijing Forestry University, 2013, 35(5): 110-116. |
[5] | YU Xiao-nan, JI Li-jing, WANG Qi. Research advances in molecular genetic diversity of Paeonia L.[J]. Journal of Beijing Forestry University, 2012, 34(3): 130-136. |
[6] | Lv Jin-hui, HU Jian-jun, LU Meng-zhu. AFLP molecular marker of Salix spp. based on apillary electrophoresis[J]. Journal of Beijing Forestry University, 2012, 34(1): 51-57. |
[7] | CHEN Feng-mao, YE Jian-ren, WU Xiao-qin, TAN Jia-jin, HUANG Lin. Two kinds of applied molecular skills to detect Bursaphelenchus xylophilus[J]. Journal of Beijing Forestry University, 2011, 33(4): 149-152. |
[8] | LIU Yan-|jing, WANG Cai-ling, LU Hai, YANG Hai-ling. Molecular evolution and expression pattern of the Populus 14-3-3 gene family[J]. Journal of Beijing Forestry University, 2010, 32(3): 1-7. |
[9] | HU Xiao-li, ZHOU Chun-jiang, YUE Liang-song. Molecular identification of Populus tomentosa triploid clones by AFLP[J]. Journal of Beijing Forestry University, 2006, 28(2): 9-14. |
[10] | BAO Ren-yan, JIANG Chun-ning, ZHENG Cai-xia, DING Kun-shan. Molecular mechanism of the regulation of female gametophyte development in plants[J]. Journal of Beijing Forestry University, 2005, 27(4): 90-96. |