• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Jin Zhi, Chen Qian, Dai Linxin, Ma Jianfeng. Research progress in macromolecular orientation of lignocellulosic cell wall[J]. Journal of Beijing Forestry University, 2022, 44(12): 153-160. DOI: 10.12171/j.1000-1522.20220215
Citation: Jin Zhi, Chen Qian, Dai Linxin, Ma Jianfeng. Research progress in macromolecular orientation of lignocellulosic cell wall[J]. Journal of Beijing Forestry University, 2022, 44(12): 153-160. DOI: 10.12171/j.1000-1522.20220215

Research progress in macromolecular orientation of lignocellulosic cell wall

More Information
  • Received Date: May 31, 2022
  • Revised Date: September 02, 2022
  • Available Online: September 05, 2022
  • Published Date: December 24, 2023
  • Lignocellulosic cell wall is composed of cellulose, hemicelluloses and lignin, which are entangled together to form a 3D network system. The physical and chemical interactions and ordered assembly of these macromolecular has been proved to contribute to the optimal mechanical properties of plant fiber. In the present work, the micromechanical features of cellulose, hemicelluloses and lignin were summarized, while the macromolecular interactions between cellulose-hemicelluloses, cellulose-lignin, hemicelluloses-lignin as well as the cellulose molecular conformation modulated orientation correlation among these macromolecular were reviewed. Furthermore, the characteristics among light microscopy, SEM, TEM, AFM, FT-IR microscopy, polarized laser confocal Raman microscopy, sum frequency generation spectroscopy and X-ray diffraction/scattering techniques were compared. Especially, the application of molecular spectroscopy imaging approaches in revealing the macromolecular orientation of lignocellulosic fiber was discussed. Finally, the further research in macromolecular orientation was listed as following: systematically elucidating the effects of supramolecular structure of cellulose in lignocellulosic cell wall, the types of three intermolecular bonds, and the conformation of cellulose on the ordered assembly of the hemicellulose glycosidic bonds and lignin aromatic rings; revealing the structure, orientation and micromechanical changes of cellulose filament aggregates in various cell walls during the development of lignocellulosic fibers at the nanoscale; three-dimensional imaging and quantitative study of macromolecular orientation of wood fibers at the cell wall level; constructing fiber cell wall skeleton models of conifer, broadleaved and gramineous plants based on the results of molecular structure characterization, molecular simulation and 3D imaging.
  • [1]
    江泽慧. 世界竹藤[M]. 沈阳: 辽宁科学技术出版社, 2002.

    Jiang Z H. Bamboo and rattan in the world[M]. Shenyang: Liaoning Science and Technology Press, 2002.
    [2]
    Baskin T I. Plant cell growth: cellulose caught slipping[J]. Nature Plants, 2017, 3(5): 17063. doi: 10.1038/nplants.2017.63
    [3]
    Berglund J, Mikkelsen D, Flanagan B M, et al. Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks[J]. Nature Communications, 2020, 11(1): 4962. doi: 10.1038/s41467-020-18798-7
    [4]
    Gao Y, Lipton A S, Wittmer Y, et al. A grass-specific cellulose–xylan interaction dominates in sorghum secondary cell walls[J]. Nature Communications, 2020, 11(1): 6081. doi: 10.1038/s41467-020-19837-z
    [5]
    孙海燕, 苏明垒, 吕建雄, 等. 细胞壁微纤丝角和结晶区对木材物理力学性能影响研究进展[J]. 西北农林科技大学学报(自然科学版), 2019, 47(5): 50−58. doi: 10.13207/j.cnki.jnwafu.2019.05.007

    Sun H Y, Su M L, Lü J X, et al. Research progress on effect of microfibril angle and crystalline area in cell wall on wood physical and mechanical properties[J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(5): 50−58. doi: 10.13207/j.cnki.jnwafu.2019.05.007
    [6]
    Nishino T, Takano K, Nakamae K. Elastic modulus of the crystalline regions of cellulose polymorphs[J]. Journal of Polymer Science Part B: Polymer Physics, 1995, 33(11): 1647−1651. doi: 10.1002/polb.1995.090331110
    [7]
    Tanaka F, Iwata T. Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation[J]. Cellulose, 2006, 13(5): 509−517. doi: 10.1007/s10570-006-9068-x
    [8]
    Gibson L J. The hierarchical structure and mechanics of plant materials[J]. Journal of the Royal Society Interface, 2012, 76(9): 2749−2766. doi: 10.1098/rsif.2012.0341
    [9]
    Fry S C. The structure and functions of xyloglucan[J]. Journal of Experimental Botany, 1989, 40(1): 1−11. doi: 10.1093/jxb/40.1.1
    [10]
    Konnerth J, Eiser M, Jäger A, et al. Macro-and micro-mechanical properties of red oak wood (Quercus rubra L.) treated with hemicellulases[J]. Holzforschung, 2010, 64(4): 447−453.
    [11]
    Silveira R L, Stoyanov S R, Gusarov S, et al. Plant biomass recalcitrance: effect of hemicellulose composition on nanoscale forces that control cell wall strength[J]. Journal of the American Chemical Society, 2013, 135(51): 19048−19051. doi: 10.1021/ja405634k
    [12]
    Youssefian S, Rahbar N. Molecular origin of strength and stiffness in bamboo fibrils[J]. Scientific Report, 2015, 5(1): 11116. doi: 10.1038/srep11116
    [13]
    Bergander A, Salmen L J. Cell wall properties and their effects on the mechanical properties of fibers[J]. Materials Science, 2002, 37(1): 151−156.
    [14]
    Ruggeberg M, Speck T, Paris O, et al. Stiffness gradients in vascular bundles of the palm Washingonia robusta[C]. Proceedings of the Royal Society B: Biological Sciences, 2008, 275(1648): 2221−2229.
    [15]
    Özparpucu M, Rüggeberg M, Gierlinger N, et al. Unravelling the impact of lignin on cell wall mechanics: a comprehensive study on young poplar trees downregulated for cinnamyl alcohol dehydrogenase (CAD)[J]. The Plant Journal, 2017, 91(3): 480−490. doi: 10.1111/tpj.13584
    [16]
    Koehler L, Telewski F W. Biomechanics and transgenic wood[J]. American Journal of Botany, 2006, 93(10): 1433−1438. doi: 10.3732/ajb.93.10.1433
    [17]
    Bjurhager I, Olsso A M, Zhang B, et al. Ultrastructure and mechanical properties of populous wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase[J]. Biomacromolecules, 2010, 11(9): 2359−2365. doi: 10.1021/bm100487e
    [18]
    Horvath L, Peszlen I, Peralta P, et al. Mechanical properties of genetically engineered young aspen with modified lignin content and/or structure[J]. Wood and Fiber Science: Journal of the Society of Wood Science and Technology, 2010, 42(3): 310−317.
    [19]
    Salmén L, Burgert I. Cell wall features with regard to mechanical performance. a review[J]. Holzforschung, 2009, 63(2): 121−129.
    [20]
    Wang J P, Matthews M L, Williams C M, et al. Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis[J]. Nature Communications, 2018, 9(1): 1−16. doi: 10.1038/s41467-017-02088-w
    [21]
    Iiyama K, Lam T, Stone B A. Covalent cross-links in the cell wall[J]. Plant Physiology, 1994, 104(2): 315−320. doi: 10.1104/pp.104.2.315
    [22]
    Besombes S, Mazeau K. The cellulose/lignin assembly assessed by molecular modeling (Part 2): seeking for evidence of organization of lignin molecules at the interface with cellulose[J]. Plant Physiology & Biochemistry, 2005, 43(3): 277−286.
    [23]
    Simmons T J, Mortimer J C, Bernardinelli O D, et al. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR[J]. Nature Communications, 2016, 7(1): 13902. doi: 10.1038/ncomms13902
    [24]
    Grantham N J, Wurman-Rodrich J, Terrett O M, et al. An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls[J]. Nature Plants, 2017, 3(11): 859−865. doi: 10.1038/s41477-017-0030-8
    [25]
    Zheng Y, Wang X, Chen Y, et al. Xyloglucan in the primary cell wall: assessment by FESEM, selective enzyme digestions and nanogold affinity tags[J]. The Plant Journal, 2017, 93(2): 211−226.
    [26]
    Terrett O M, Lyczakowski J J, Yu L, et al. Molecular architecture of softwood revealed by solid-state NMR[J]. Nature Communication, 2019, 10(1): 1−11. doi: 10.1038/s41467-018-07882-8
    [27]
    Faulon J L, Carlson G A, Hatcher P G. A three-dimensional model for lignocellulose from gymnospermous wood[J]. Organic Geochemistry, 1994, 21(12): 1169−1179. doi: 10.1016/0146-6380(94)90161-9
    [28]
    Zhao Z, Crespi V H, Kubicki J D, et al. Molecular dynamics simulation study of xyloglucan adsorption on cellulose surfaces: effects of surface hydrophobicity and side-chain variation[J]. Cellulose, 2014, 21(2): 1025−1039. doi: 10.1007/s10570-013-0041-1
    [29]
    Houtman C J, Atalla R H. Cellulose-lignin interactions: a computational study[J]. Plant Physiology, 1995, 107(3): 977−984. doi: 10.1104/pp.107.3.977
    [30]
    Atalla R H. Cellulose and the hemicelluloses: patterns for the assembly of lignin[J]. Acs Symposium, 1998, 697: 172−179.
    [31]
    向松明, 谢益民, 杨海涛, 等. 纤维素前驱物6-13C标记示踪研究纤维素与木质素连接方式[J]. 林产化学与工业, 2014, 34(1): 37−42.

    Xiang S M, Xie Y M, Yang H T, et al. Analysis of the association between cellulose and lignin by carbon 13 tracer method with cellulose precursor[J]. Chemistry and Industry of Forest Products, 2014, 34(1): 37−42.
    [32]
    Charlier L, Mazeau K. Molecular modeling of the structural and dynamical properties of secondary plant cell walls: influence of lignin chemistry[J]. Journal of Physical Chemistry B, 2012, 116(14): 4163−4174. doi: 10.1021/jp300395k
    [33]
    Kang X, Kirui A, Widanage M C D, et al. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR[J]. Nature Communication, 2019, 10(1): 347. doi: 10.1038/s41467-018-08252-0
    [34]
    金克霞, 江泽慧, 刘杏娥, 等. 植物细胞壁纤维素纤丝聚集体结构研究进展[J]. 材料导报, 2019, 33(17): 2997−3002.

    Jin K X, Jiang Z H, Liu X E, et al. Research advance in cellulose fibril aggregates structure of plant cell wall[J]. Materials Reports, 2019, 33(17): 2997−3002.
    [35]
    Peng H, Salmén L, Stevanic J S, et al. Structural organization of the cell wall polymers in compression wood as revealed by FTIR microspectroscopy[J]. Planta, 2019, 250(1): 163−171. doi: 10.1007/s00425-019-03158-7
    [36]
    Salmén L. On the organization of hemicelluloses in the wood cell wall[J]. Cellulose, 2022, 29(3): 1349−1355. doi: 10.1007/s10570-022-04425-9
    [37]
    Gierlinger N, Luss S, König C, et al. Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging[J]. Journal of Experimental Botany, 2010, 61(2): 587−595. doi: 10.1093/jxb/erp325
    [38]
    Souza N D, Lima J T, Soares B. Application of X-ray diffraction to assess the microfibril angle of green and dry eucalyptus grandis wood[J]. Trees, 2021(36): 191−197.
    [39]
    Lian C, Yuan J, Luo J, et al. Microfibril orientation of the secondary cell wall in parenchyma cells of Phyllostachys edulis culms[J]. Cellulose, 2022, 29(4): 3153−3161.
    [40]
    Ba Z, Chen G, Luo H, et al. In situ SAXS analysis of the water effects on the thickness evolution of nanocellulose within bamboo fiber[J]. Wood Science and Technology, 2021, 55(2): 351−360. doi: 10.1007/s00226-020-01260-8
    [41]
    Huang S, Makarem M, Kiemle S N, et al. Inhomogeneity of cellulose microfibril assembly inplant cell walls revealed with sum frequency generation microscopy[J]. The Journal of Physical Chemistry B, 2018, 122(19): 5006−5019. doi: 10.1021/acs.jpcb.8b01537
    [42]
    Donaldson L, Frankland A. Ultrastructure of iodine treated wood[J]. Holzforschung, 2004, 58(3): 219−225. doi: 10.1515/HF.2004.034
    [43]
    Hu K, Huang Y, Fei B, et al. Investigation of the multilayered structure and microfibril angle of different types of bamboo cell walls at the micro/nano level using a LC-PolScope imaging system[J]. Cellulose, 2017, 24(11): 4611−4625. doi: 10.1007/s10570-017-1447-y
    [44]
    Song B, Zhao S, Shen W, et al. Direct measurement of plant cellulose microfibril and bundles in native cell walls[J]. Frontiers in Plant Science, 2020, 11(1): 479.
    [45]
    Ren W, Zhu J, Guo F, et al. Estimating cellulose microfibril orientation in the cell wall sublayers of bamboo through dimensional analysis of microfibril aggregates[J]. Industrial Crops and Products, 2022, 179: 114677.
    [46]
    Ma J F, Lü X L, Yang S M, et al. Structural insight into cell wall architecture of Miscanthus sinensis cv. using correlative microscopy approaches[J]. Microscopy and Microanalysis, 2015, 21(5): 1−10.
    [47]
    Stevanic J S, Salmén L. Orientation of the wood polymers in the cell wall of spruce wood fibers[J]. Holzforschung, 2009, 63(5): 497−503.
    [48]
    Olsson A M, Bjurhager I, Gerber L, et al. Ultra-structural organisation of cell wall polymers in normal and tension wood of aspen revealed by polarisation FTIR microspectroscopy[J]. Planta, 2011, 233(6): 1277−1286. doi: 10.1007/s00425-011-1384-1
    [49]
    Zhu J W, Ren W T, Guo F, et al. The spatial orientation and interaction of cell wall polymers in bamboo revealed with a combination of imaging polarized FTIR and directional chemical removal[J]. Cellulose, 2022, 29: 3163−3176. doi: 10.1007/s10570-022-04506-9
    [50]
    Atalla R H, Agarwal U P. Raman microprobe evidence for lignin orientation in the cell walls of native woody tissue[J]. Science, 1985, 227: 636−638. doi: 10.1126/science.227.4687.636
    [51]
    Agarwal U P, Atalla R H. In situ Raman microprobe studies of plant cell walls: macromolecular organization and compositional variability in the secondary wall of Picea mariana (Mill.) B.S.P[J]. Planta, 1986, 169(3): 325−332. doi: 10.1007/BF00392127
    [52]
    Ma J F, Zhang Z H, Yang G H, et al. Ultrastructural topochemistry of cell wall polymers in Populus nigra by transmission electron microscopy and Raman imaging[J]. BioResources, 2011, 6(4): 3944−3959.
    [53]
    Ma J F, Zhou X, Zhang X, et al. Label-Free in situ Raman analysis of opposite and tension wood in Populus nigra[J]. BioResources, 2013, 8(2): 2222−2233.
    [54]
    Sun L, Singh S, Joo M, et al. Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy[J]. Biotechnology and Bioengineering, 2015, 113(1): 82−90.
    [55]
    Wang X Q, Ren H Q, Zhang B, et al. Cell wall structure and formation of maturing fibres of moso bamboo (Phyllostachys pubescens) increase buckling resistance[J]. Journal of the Royal Society Interface, 2012, 9: 988−996. doi: 10.1098/rsif.2011.0462
    [56]
    Wang X Q, Tobias K, Notburga G, et al. Plant material features responsible for bamboo’s excellent mechanical performance: a comparison of tensile properties of bamboo and spruce at the tissue, fiber and cell wall levels[J]. Annals of Botany, 2014, 114(8): 1627−1635. doi: 10.1093/aob/mcu180
    [57]
    冯龙, 孙存举, 毕文思, 等. 毛竹薄壁细胞组分分布及取向显微成像研究[J]. 光谱学与光谱分析, 2020, 40(9): 2957−2961.

    Feng L, Sun C J, Bi W S, et al. The distribution and orientation of cell wall components of moso bamboo parenchyma[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2957−2961.
    [58]
    冯龙, 金克霞, 刘杏娥, 等. 黄藤细胞壁微纤丝取向偏振光拉曼光谱研究[J]. 光谱学与光谱分析, 2019, 39(9): 2758−2762.

    Feng L, Jin K X, Liu X E, et al. Study on microfibrils orientation in Daemonorops jenkinsiana cell wall by polarized laser Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2758−2762.
  • Related Articles

    [1]FU Jing, DAI Si-lan.. Analysis of color phenotypic and pigment contents of chrysanthemum based on hyperspectral imaging.[J]. Journal of Beijing Forestry University, 2016, 38(8): 88-98. DOI: 10.13332/j.1000-1522.20150483
    [2]LI Yao-xiang, LI Ying, JIANG Li-chun. Pretreatment of near-infrared spectroscopy of wood based on wavelet compression[J]. Journal of Beijing Forestry University, 2016, 38(3): 89-94. DOI: 10.13332/j.1000-1522.20150299
    [3]DU Yu-liang, CHEN Ye, LIU Cai-hong, YIN Zeng-fang. Molecular regulation mechanism of vascular pattern formation in plant[J]. Journal of Beijing Forestry University, 2014, 36(3): 142-150. DOI: 10.13332/j.cnki.jbfu.2014.03.023
    [4]LIU Zhen-bo, XUE Zhan-chuan, LIU Yi-xing, WANG Peng, SHEN Xiao-yan, KONG Wen-yang, WANG Xiang-ming. Prediction of holocellulose content of poplar using near infrared spectroscopy.[J]. Journal of Beijing Forestry University, 2013, 35(5): 110-116.
    [5]YU Xiao-nan, JI Li-jing, WANG Qi. Research advances in molecular genetic diversity of Paeonia L.[J]. Journal of Beijing Forestry University, 2012, 34(3): 130-136.
    [6]Lv Jin-hui, HU Jian-jun, LU Meng-zhu. AFLP molecular marker of Salix spp. based on apillary electrophoresis[J]. Journal of Beijing Forestry University, 2012, 34(1): 51-57.
    [7]CHEN Feng-mao, YE Jian-ren, WU Xiao-qin, TAN Jia-jin, HUANG Lin. Two kinds of applied molecular skills to detect Bursaphelenchus xylophilus[J]. Journal of Beijing Forestry University, 2011, 33(4): 149-152.
    [8]LIU Yan-|jing, WANG Cai-ling, LU Hai, YANG Hai-ling. Molecular evolution and expression pattern of the Populus 14-3-3 gene family[J]. Journal of Beijing Forestry University, 2010, 32(3): 1-7.
    [9]HU Xiao-li, ZHOU Chun-jiang, YUE Liang-song. Molecular identification of Populus tomentosa triploid clones by AFLP[J]. Journal of Beijing Forestry University, 2006, 28(2): 9-14.
    [10]BAO Ren-yan, JIANG Chun-ning, ZHENG Cai-xia, DING Kun-shan. Molecular mechanism of the regulation of female gametophyte development in plants[J]. Journal of Beijing Forestry University, 2005, 27(4): 90-96.
  • Cited by

    Periodical cited type(6)

    1. 朱飞,姜华彬,高中旺,曾磊,聂葭琦,谢君,张爱萍. 稀硫酸协同乙二醇高效解构玉米秸秆及对酶解效率的影响. 造纸科学与技术. 2024(02): 1-6 .
    2. 李若凡,葛颜锐,陈盈盈,吴丁洁,崔亚宁,李瑞丽. 光谱成像技术及其在植物中的应用研究进展. 电子显微学报. 2024(03): 390-404 .
    3. 彭佃亮,张敬敏,王兴翠,杨文霞,唐玉海,徐海成. 叶面喷施钙与吲哚乙酸对番茄果皮生理特征及果实裂果的影响. 江苏农业科学. 2024(17): 135-139 .
    4. 邱锐,何峰,李瑞,王亚梅,邢思年,曹英萍,刘叶飞,周昕越,赵彦,付春祥. 柳枝稷木质素基因F5H的高效编辑. 植物学报. 2023(02): 298-307 .
    5. 李娟. 植物纤维的结构特征及在绿色环保中的应用. 分子植物育种. 2023(16): 5523-5527 .
    6. 寸丽芳,房立媛,林敏娟,王振磊. 喷施外源钙对骏枣裂果和相关生理特性及显微结构的影响. 果树学报. 2023(09): 1894-1903 .

    Other cited types(6)

Catalog

    Article views (1092) PDF downloads (136) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return