• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Yi, Baiketuerhan Yeerjiang, Wang Xuanying, Zhang Xinna, Cheng Yanxia. Response of photosynthetic physiological characteristics of rare broadleaved tree species Juglans mandshurica seedlings to simulated nitrogen deposition[J]. Journal of Beijing Forestry University, 2024, 46(1): 10-18. DOI: 10.12171/j.1000-1522.20220225
Citation: Zhang Yi, Baiketuerhan Yeerjiang, Wang Xuanying, Zhang Xinna, Cheng Yanxia. Response of photosynthetic physiological characteristics of rare broadleaved tree species Juglans mandshurica seedlings to simulated nitrogen deposition[J]. Journal of Beijing Forestry University, 2024, 46(1): 10-18. DOI: 10.12171/j.1000-1522.20220225

Response of photosynthetic physiological characteristics of rare broadleaved tree species Juglans mandshurica seedlings to simulated nitrogen deposition

More Information
  • Received Date: June 08, 2022
  • Revised Date: December 16, 2022
  • Accepted Date: November 20, 2023
  • Available Online: November 23, 2023
  • Objective 

    This paper aims to investigate the effects of simulated nitrogen deposition on the photosynthesis parameters and leaf traits of Juglans mandshurica on stub land in the growing season.

    Method 

    A nitrogen addition test was performed in Kaiyuan Tree Farm in Shulan City, Jilin Province of northeastern China. Saplings of Juglans mandshurica were taken artificially as experimental materials and urea solution was used as the nitrogen source and sprayed on canopy, with three levels of nitrogen solution as CK (0 kg/(year·ha)), LN (50 kg/(year·ha)), HN (100 kg/(year·ha)). The parameters of photosynthesis, fluorescence, leaf traits were determined, and the relevance among different photosynthetic parameters was analyzed.

    Result 

    (1) The photosynthetic capacity of Juglans mandshurica was enhanced by nitrogen treatment. The chlorophyll content, maximum carboxylation rate, instantaneous carboxylation rate and maximum electron transport rate of Juglans mandshurica increased significantly under both levels of nitrogen treatment. Meanwhile, the maximum net photosynthetic rate, net photosynthetic rate, total photosynthetic carbon assimilation per plant, light compensation point and light saturation point increased significantly under HN treatment. (2) Nitrogen treatment changed the stomal behavior of Juglans mandshurica. Under LN treatment, the stomatal conductance and transpiration rate decreased. Meanwhile, water use efficiency increased. (3) Nitrogen treatment expanded the leaf area of Juglans mandshurica. The leaflet area, total number of leaflets and total leaf area of Juglans mandshurica made positive response to HN treatment. (4) The fluorescence parameters increased at first and then decreased with increasing levels of nitrogen addition treatment. (5) The coefficient of correlation between total photosynthetic carbon assimilation per plant, and total leaf area was higher than that between total photosynthetic carbon assimilation per plant, and net photosynthetic rate per area.

    Conclusion 

    In general, the nitrogen addition treatment has a positive effect on the photosynthesis of Juglans mandshurica. However, the response of different photosynthetic physiological process varies through different levels of simulated nitrogen addition treatments. Furthermore, stimulated by nitrogen addition, increasing growth of total photosynthetic carbon assimilation per plant, was related more closely to expansion of total leaf area than augmentation of net photosynthetic rate per area.

  • [1]
    毛晋花, 邢亚娟, 马宏宇, 等. 氮沉降对植物生长的影响研究进展[J]. 中国农学通报, 2017, 33(29): 42−48. doi: 10.11924/j.issn.1000-6850.casb16110061

    Mao J H, Xing Y J, Ma H Y, et al. Research progress of nitrogen deposition effect on plant growth[J]. Chinese Agricultural Science Bulletin, 2017, 33(29): 42−48. doi: 10.11924/j.issn.1000-6850.casb16110061
    [2]
    李琛琛, 刘宁, 郭晋平, 等. 氮沉降对华北落叶松叶特性和林下土壤特性的短期影响[J]. 生态环境学报, 2014, 23(12): 1924−1932. doi: 10.3969/j.issn.1674-5906.2014.12.006

    Li C C, Liu N, Guo J P, et al. Short term effect of nitrogen deposition on needle of Larix and forest soil[J]. Ecology and Environmental Sciences, 2014, 23(12): 1924−1932. doi: 10.3969/j.issn.1674-5906.2014.12.006
    [3]
    邹安龙, 李修平, 倪晓凤, 等. 模拟氮沉降对北京东灵山辽东栎林树木生长的影响[J]. 植物生态学报, 2019, 43(9): 783−792. doi: 10.17521/cjpe.2018.0232

    Zou A L, Li X P, Ni X F, et al. Responses of tree growth to nitrogen addition in Quercus wutaishanica forests in Mount Dongling, Beijing, China[J]. Chinese Journal of Plant Ecology, 2019, 43(9): 783−792. doi: 10.17521/cjpe.2018.0232
    [4]
    LeBauer D S, Treseder K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89: 371−379. doi: 10.1890/06-2057.1
    [5]
    Yan G Y, Xing Y J, Wang J Y, et al. Sequestration of atmospheric CO2 in boreal forest carbon pools in northeastern China: effects of nitrogen deposition[J]. Agricultural and Forest Meteorology, 2018, 248: 70−81. doi: 10.1016/j.agrformet.2017.09.015
    [6]
    Mao Q G, Lu X K, Mo H, et al. Effects of simulated N deposition on foliar nutrient status, N metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest[J]. Science of the Total Environment, 2018, 610−611: 555−562. doi: 10.1016/j.scitotenv.2017.08.087
    [7]
    Liu M H, Wang Y X, Li Q, et al. Photosynthesis, ecological stoichiometry, and non-structural carbohydrate response to simulated nitrogen deposition and phosphorus addition in Chinese fir forests[J]. Forests, 2019, 10(12): 1068−1084. doi: 10.3390/f10121068
    [8]
    Li R R, Lu Y, Wan F X, et al. Impacts of a high nitrogen load on foliar nutrient status, N metabolism, and photosynthetic capacity in a Cupressus lusitanica Mill. plantation[J]. Forests, 2018, 9(8): 483−494. doi: 10.3390/f9080483
    [9]
    Liang X Y, Zhang T, Lu X K, et al. Global response patterns of plant photosynthesis to nitrogen addition: a meta-analysis[J]. Global Change Biology, 2020, 26(6): 3585−3600. doi: 10.1111/gcb.15071
    [10]
    Sun J W, Yao F Q, Wu J B, et al. Effect of nitrogen levels on photosynthetic parameters, morphological and chemical characters of saplings and trees in a temperate forest[J]. Journal of Forestry Research, 2018, 29(6): 1481−1488. doi: 10.1007/s11676-017-0547-8
    [11]
    Wang M, Zhang W W, Li N, et al. Photosynthesis and growth responses of Fraxinus mandshurica Rupr. seedlings to a gradient of simulated nitrogen deposition[J]. Annals of Forest Science, 2018, 1: 75−86.
    [12]
    Wang X, Wang B, Wang C Z, et al. Canopy processing of N deposition increases short-term leaf N uptake and photosynthesis, but not long-term N retention for aspen seedlings[J]. New Phytologist, 2021, 229(5): 2601−2610. doi: 10.1111/nph.17041
    [13]
    Liu N, Wu S H, Guo Q F, et al. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments[J]. Science of the Total Environment, 2018, 637−638: 1026−1034. doi: 10.1016/j.scitotenv.2018.05.060
    [14]
    王凯, 朱教君, 于立忠, 等. 光环境对胡桃楸幼苗生长与光合作用的影响[J]. 应用生态学报, 2010, 21(4): 821−826. doi: 10.13287/j.1001-9332.2010.0149

    Wang K, Zhu J J, Yu L Z, et al. Effects of light environment on Juglans mandshurica seedlings growth and photosynthesis[J]. Chinese Journal of Applied Ecology, 2010, 21(4): 821−826. doi: 10.13287/j.1001-9332.2010.0149
    [15]
    闫涛, 杨凯, 朱教君. 辽东山区主要树种叶片氮、磷、钾再吸收[J]. 生态学杂志, 2014, 33(8): 2005−2011. doi: 10.13292/j.1000-4890.2014.0178

    Yan T, Yang K, Zhu J J. Leaf N, P and K resorption of major tree species in a montane region of eastern Liaoning Province, China[J]. Chinese Journal of Ecology, 2014, 33(8): 2005−2011. doi: 10.13292/j.1000-4890.2014.0178
    [16]
    姚余君, 刘菲, 胡海清, 等. 火烧对胡桃楸人工林土壤化学性质的影响[J]. 东北林业大学学报, 2008, 36(7): 34−36. doi: 10.3969/j.issn.1000-5382.2008.07.014

    Yao Y J, Liu F, Hu H Q, et al. Effect of fire on soil chemical properties of manchurican walnut plantation[J]. Journal of Northeast Forestry University, 2008, 36(7): 34−36. doi: 10.3969/j.issn.1000-5382.2008.07.014
    [17]
    Rosa C, Goodman J A, Oliet J L, et al. Nitrogen fertilization of black walnut ( Juglans nigra L.) during plantation establishment. Physiology of production[J]. European Journal of Forest Research, 2014, 133: 153−164. doi: 10.1007/s10342-013-0754-6
    [18]
    郝龙飞, 王庆成, 刘婷岩. 东北地区4种林分土壤呼吸及温、湿度敏感性对氮添加的短期响应[J]. 生态学报, 2020, 40(2): 560−567.

    Hao L F, Wang Q C, Liu T Y. Short-term responses of soil reapiration, temperature and humidity sensitivity to nitrogen addition in four forests of Northeast China[J]. Acta Ecologica Sinica, 2020, 40(2): 560−567.
    [19]
    Lore T, Sara V, Leandro V L, et al. Vertical profiles of leaf photosynthesis and leaf traits, and soil nutrients in two tropical rainforests in French Guiana before and after a three-year nitrogen and phosphorus addition experiment[J]. Earth System Science Data, 2021, 142(10): 5194−5206.
    [20]
    万雪冰, 王庆贵, 闫国永, 等. 天然次生林植物叶片生态化学计量特征及光合特性对长期N沉降的响应[J]. 植物研究, 2019, 39(3): 407−420. doi: 10.7525/j.issn.1673-5102.2019.03.011

    Wan X B, Wang Q G, Yan G Y, et al. Response of ecological stoichiometric characteristics and photosynthetic characteristics of plant leaves to long-term N deposition in natural secondary forest[J]. Bulletin of Botanical Research, 2019, 39(3): 407−420. doi: 10.7525/j.issn.1673-5102.2019.03.011
    [21]
    张羽, 孙浩钊, 刘燕飞, 等. 氮添加和干旱对亚热带两个树种生长、光合及挥发性有机碳释放的影响[J]. 福建农林大学学报(自然科学版), 2021, 50(4): 524−532. doi: 10.13323/j.cnki.j.fafu(nat.sci.).2021.04.013

    Zhang Y, Sun H Z, Sun Y F, et al. Effects of nitrogen addition and drought on seedling growth, photosynthesis and volatile organic compounds-carbon emission of two subtropical tree seedlings[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2021, 50(4): 524−532. doi: 10.13323/j.cnki.j.fafu(nat.sci.).2021.04.013
    [22]
    裴昊斐, 高卫东, 方娇阳, 等. 模拟氮沉降对一年生香椿幼苗生长和光合特性的影响[J]. 中国生态农业学报(中英文), 2019, 27(10): 1546−1552.

    Pei H F, Gao W D, Fang J Y, et al. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of one-year-old Toona sinensis seedlings[J]. Chinese Journal of Eco-Agriculture, 2019, 27(10): 1546−1552.
    [23]
    孙旭生, 林琪, 姜雯, 等. 施氮量对开花期超高产小麦旗叶CO2响应曲线的影响[J]. 麦类作物学报, 2009, 29(2): 303−307.

    Sun X S, Lin Q, Jiang W, et al. Effects of different amount of nitrogen supply on the CO2-response curve in flag leaves of superhigh-yield winter wheat at flowering stage[J]. Journal of Triticeae Crops, 2009, 29(2): 303−307.
    [24]
    任宇航, 胥晓, 刘沁松, 等. 模拟氮沉降和铅胁迫对珙桐幼苗生长的影响[J]. 西华师范大学学报(自然科学版), 2019, 40(2): 112−118.

    Ren Y H, Xu X, Liu Q S, et al. Effects of simulated nitrogen deposition and lead stress on the growth of Davidia involucrate seedlings[J]. Journal of China West Normal University (Natural Sciences), 2019, 40(2): 112−118.
    [25]
    苏金娟, 王晓春. 张广才岭北部三大硬阔树木生长−气候关系的时空变异[J]. 生态学报, 2017, 37(5): 1484−1495.

    Su J J, Wang X C. Spatio-temporal variations in climate-growth relationships of three hardwood tree species across the north Zhangguangcai Mountains, northeast China[J]. Acta Ecologica Sinica, 2017, 37(5): 1484−1495.
    [26]
    常宏, 杨洪国, 赵广东, 等. 施氮和减水对中亚热带壳斗科三种幼树生物量及其分配的影响[J]. 生态学报, 2019, 39(18): 6753−6761.

    Chang H, Yang H G, Zhao G D, et al. Effects of nitrogen application and rainfall exclusion on biomass and biomass allocation in saplings from three species of the Fagaceae family in the mid-subtropical region of China[J]. Acta Ecologica Sinica, 2019, 39(18): 6753−6761.
    [27]
    孙金伟, 吴家兵, 任亮, 等. 氮添加对长白山阔叶红松林2种树木幼苗光合生理生态特征的影响[J]. 生态学报, 2016, 36(21): 6777−6785.

    Sun J W, Wu J B, Ren L, et al. Response of photosynthetic physiological characteristics to nitrogen addition by seedlings of two dominant tree species in a broadleaved-Korean pine mixed forest on Changbai Mountain[J]. Acta Ecologica Sinica, 2016, 36(21): 6777−6785.
    [28]
    刘壮壮, 骆敏, 彭方仁, 等. 不同品种薄壳山核桃光合及快速叶绿素荧光诱导动力学特性[J]. 东北林业大学学报, 2017, 45(4): 36−42. doi: 10.3969/j.issn.1000-5382.2017.04.008

    Liu Z Z, Luo M, Peng F R, et al. Characteristics of photosynthesis and fast chlorophyll fluorescence induction dynamics in different pecan cultivars[J]. Journal of Northeast Forestry University, 2017, 45(4): 36−42. doi: 10.3969/j.issn.1000-5382.2017.04.008
    [29]
    蒋思思, 魏丽萍, 杨松, 等. 不同种源油松幼苗的光合色素和非结构性碳水化合物对模拟氮沉降的短期响应[J]. 生态学报, 2015, 35(21): 7061−7070.

    Jiang S S, Wei L P, Yang S, et al. Short term responses of photosynthetic pigments and nonstructural carbohydrates to simulated nitrogen deposition in three provenances of Pinus tabulaeformis Carr. seedlings[J]. Acta Ecologica Sinica, 2015, 35(21): 7061−7070.
    [30]
    刘校铭, 杨晓芳, 王璇, 等. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197−207. doi: 10.17521/cjpe.2018.0303

    Liu J M, Yang X F, Wang X, et al. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broadleaved forest[J]. Chinese Journal of Plant Ecology, 2019, 43(3): 197−207. doi: 10.17521/cjpe.2018.0303
    [31]
    方海富, 冯为迅, 罗来聪, 等. 氮沉降背景下土壤微生物对入侵植物乌桕叶绿素荧光特征的影响[J]. 生态学报, 2021, 41(23): 9377−9387.

    Fang H F, Feng W X, Luo L C, et al. Effects of soil microorganisms on chlorophyll fluorescence characteristics of invasive Triadica sebifera with nitrogen deposition[J]. Acta Ecologica Sinica, 2021, 41(23): 9377−9387.
    [32]
    Guo W X, Zhao Z J, Zheng J, et al. Interaction of soil water and nitrogen on the photosynthesis and growth in Pinus tabulaeformis seedlings[J]. Scientia Silvae Sinicae, 2017, 53(4): 37−48.
    [33]
    曲道春, 江洪, 由美娜. 氮沉降对香樟叶片光合及叶绿素荧光特性的影响研究[J]. 环境污染与防治, 2011, 33(11): 15−19. doi: 10.3969/j.issn.1001-3865.2011.11.004

    Qu D C, Jiang H, You M N. Effects of nitrogen deposition on photosynthesis and chlorophyll fluorescence characteristics of Cinnamomum camphora[J]. Environmental Pollution & Control, 2011, 33(11): 15−19. doi: 10.3969/j.issn.1001-3865.2011.11.004
    [34]
    钱树玥, 王巧, 刘宁, 等. 氮沉降和磷添加对杉木光合及叶绿素荧光特征的影响[J]. 生态科学, 2018, 37(5): 113−121.

    Qian S Y, Wang Q, Liu N, et al. Effects of nitrogen deposition and phosphorus addition on photosynthesis and chlorophyll fluorescence characteristics of Chinese fir[J]. Ecological Science, 2018, 37(5): 113−121.
    [35]
    郑翔, 江亮波, 邓邦良, 等. UV-B辐射增强和氮沉降对不同种源地乌桕叶绿素荧光参数的影响[J]. 浙江农业学报, 2018, 30(2): 248−254.

    Zheng X, Jiang L B, Deng B L, et al. Effects of enhanced UV-B radiation and nitrogen deposition on chlorophyll fluorescence parameters of invasive plant Triadica sebifera[J]. Acta Agriculturae Zhejiangensis, 2018, 30(2): 248−254.
    [36]
    龚薇, 严贤春, 胥晓, 等. 氮沉降对雌雄青杨生长、光合特性及叶寿命的影响差异[J]. 西华师范大学学报(自然科学版), 2021, 42(1): 14−22.

    Gong W, Yan X C, Xu X, et al. Sexual differences in growth, photosynthesis and leaf lifespan of Populus cathayana to nitrogen deposition[J]. Journal of China West Normal University (Natural Sciences), 2021, 42(1): 14−22.
    [37]
    Zhang R, Wu J S, Li Q, et al. Nitrogen deposition enhances photosynthesis in moso bamboo but increases susceptibility to other stress factors[J]. Frontiers in Plant Science, 2017, 8: 1975−1985. doi: 10.3389/fpls.2017.01975
    [38]
    Ian J W, Peter B R, Mark W, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821−827. doi: 10.1038/nature02403
    [39]
    肖迪, 王晓洁, 张凯, 等. 氮添加对山西太岳山天然油松林主要植物叶片性状的影响[J]. 植物生态学报, 2019, 40(7): 686−701.

    Xiao D, Wang X J, Zhang K, et al. Effects of nitrogen addition on leaf traits of common species in natural Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China[J]. Chinese Journal of Plant Ecology, 2019, 40(7): 686−701.
    [40]
    张书娜, 王庆成, 郝龙飞, 等. 光照和施肥对白桦林冠下水曲柳、胡桃楸苗木生长的影响[J]. 森林工程, 2015, 31(2): 51−56.

    Zhang S N, Wang Q C, Hao L F, et al. Effects of light and fertilization on the growth of Fraxinus mandshurica and Juglans mandshurica seedlings under the canopy of Betula platyphylla secondary forest[J]. Forest Engineering, 2015, 31(2): 51−56.
    [41]
    赵喆, 金则新. 模拟氮沉降对夏蜡梅幼苗生长及非结构性碳水化合物的影响[J]. 植物研究, 2020, 40(1): 41−49. doi: 10.7525/j.issn.1673-5102.2020.01.007

    Zhao Z, Jin Z X. Effects of simulated nitrogen deposition on the growth and the content of non-structure carbohydrate of Sinocalycanthus chinensis seedlings[J]. Bulletin of Botanical, 2020, 40(1): 41−49. doi: 10.7525/j.issn.1673-5102.2020.01.007
    [42]
    羊留冬, 王根绪, 杨阳, 等. 峨眉冷杉幼苗叶片功能特征及其N、P化学计量比对模拟大气氮沉降的响应[J]. 生态学杂志, 2012, 31(1): 44−50.

    Yang L D, Wang G X, Yang Y, et al. Responses of leaf functional traits and nitrogen and phosphorus stoichiometry in Abies fabiri seedlings in Gongga Mountain to simulated nitrogen deposition[J]. Chinese Journal of Ecology, 2012, 31(1): 44−50.
    [43]
    王晓荣, 潘磊, 庞宏东, 等. 模拟氮沉降对亚热带栎属树种幼苗生长、生物量累积及光合特性的影响[J]. 中南林业科技大学学报, 2016, 36(1): 78−85.

    Wang X R, Pan L, Pang H D, et al. Effects of simulated nitrogen deposition on growth, biomass accumulation and photosynthetic characteristics responses of Quercus seedlings in mid-subtropics of China[J]. Journal of Central South University of Forestry & Technology, 2016, 36(1): 78−85.
    [44]
    王芳, 张军辉, 谷越, 等. 氮添加对树木光合速率影响的meta分析[J]. 生态学杂志, 2017, 36(6): 1539−1547.

    Wang F, Zhang J H, Gu Y, et al. Meta-analysis of the effects of nitrogen addition on photosynthesis of forests[J]. Chinese Journal of Ecology, 2017, 36(6): 1539−1547.
    [45]
    Amit K, Parmanand K, Hukum S, et al. Modulation of plant functional traits under essential plant nutrients during seasonal regime in natural forests of Garhwal Himalayas[J]. Plant Soil, 2021, 465: 197−212. doi: 10.1007/s11104-021-05003-x
    [46]
    张彦敏, 周广胜. 植物叶片最大羧化速率及其对环境因子响应的研究进展[J]. 生态学报, 2012, 32(18): 5907−5917. doi: 10.5846/stxb201108091168

    Zhang Y M, Zhou G S. Advances in leaf maximum carboxylation rate and its response to environmental factors[J]. Acta Ecologica Sinica, 2012, 32(18): 5907−5917. doi: 10.5846/stxb201108091168
    [47]
    Xu N N, Guo W H, Liu J, et al. Increased nitrogen deposition alleviated the adverse effects of drought stress on Quercus variabilis and Quercus mongolica seedlings[J]. Acta Physiologiae Plantarum, 2015, 37(6): 107−117. doi: 10.1007/s11738-015-1853-4
    [48]
    韦献东, 施福军, 梁小春, 等. 模拟氮沉降对桢楠幼苗生长的影响[J]. 北方园艺, 2020(8): 74−79.

    Wei X D, Shi F J, Liang X C, et al. Effects of simulated nitrogen deposition on the growth of Phoebe zhennan seedlings[J]. Nothern Horticulture, 2020(8): 74−79.
  • Related Articles

    [1]Wu Chenglin, Wei Xing. Effects of canopy density on the growth of broadleaved tree species under artificial regeneration of Pinus sylvestris forest[J]. Journal of Beijing Forestry University, 2023, 45(8): 65-73. DOI: 10.12171/j.1000-1522.20220275
    [2]Li Longjie, Wang Jie, Ren Yunmao, Zhan Jiping, Liu Yanqing, Wang Lidong, Lu Jingxing, Jia Zhongkui. Effects of artificial promotion measures on seed germination and early growth of Larix principis-rupprechtii[J]. Journal of Beijing Forestry University, 2023, 45(4): 24-35. DOI: 10.12171/j.1000-1522.20210486
    [3]Wang Jie, Lu Jingxing, Wang Xiangzhen, Cui Jingting, Wang Lidong, Liu Yanqing, Si Ruixue, Jia Zhongkui. Natural regeneration of Larix principis-rupprechtii plantations in 9−10 years after thinning[J]. Journal of Beijing Forestry University, 2021, 43(12): 17-28. DOI: 10.12171/j.1000-1522.20200371
    [4]Tang Jixin, Jia Hongyan, Zeng Ji, An Ning, Li Hongguo, Lei Yuancai. Effects of cutting methods on natural regeneration of Mytilaria laosensis plantation[J]. Journal of Beijing Forestry University, 2020, 42(8): 12-21. DOI: 10.12171/j.1000-1522.20190281
    [5]Luo Guisheng, Ma Lüyi, Jia Zhongkui, Wu Danni, Chi Mingfeng, Zhang Shumin, Zhao Guijuan. Correlation analysis between natural regeneration and environment in canopy gap of Chinese pine (Pinus tabuliformis) plantation[J]. Journal of Beijing Forestry University, 2019, 41(9): 59-68. DOI: 10.13332/j.1000-1522.20180416
    [6]Sun Qiyue, Tan Hongyan, Chi Mingfeng, Wu Danni, Zhang Xiaowen, Jia Xi, Zhang Longyu, Jia Zhongkui. Effects of natural regeneration on soil fertility and soil enzyme activities in Pinus tabuliformis plantations after clearcutting[J]. Journal of Beijing Forestry University, 2019, 41(6): 24-34. DOI: 10.13332/j.1000-1522.20180372
    [7]Liu Zhili, Bi Lianzhu, Songx Song Guohua, Wang Quanbo, Liu Qi, Jin Guangze. Spatial heterogeneity of leaf area index in a typical mixed broadleaved-Korean pine forest in Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(11): 1-11. DOI: 10.13332/j.1000-1522.20170468
    [8]Zhang Cai, Zha Tianshan, Jia Xin, Liu Peng, Li Cheng. Dynamics and simulation of leaf area index for Artemisia ordosica community in the Mu Us Desert of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(3): 75-83. DOI: 10.13332/j.1000-1522.20170298
    [9]FENG Da-lan, HUANG Xiao-hui, LIU Yun, ZHU Heng-xing, XIANG Zhong-huai. Growth and photosynthetic characteristics of four woody plants in the rocky and desertified area.[J]. Journal of Beijing Forestry University, 2015, 37(5): 62-69. DOI: 10.13332/j.1000-1522.20130531
    [10]ZENG Xiao-ping, ZHAO Ping, RAO Xing-quan, CAI Xian. Measurement of leaf area index of three plantations and their seasonal changes in Heshan hilly land[J]. Journal of Beijing Forestry University, 2008, 30(5): 33-38.
  • Cited by

    Periodical cited type(1)

    1. 陈丽娟,郝俊飞,曹振宇,赵敏,侯思宇,张含国,张磊. 落叶松家系养分利用效率. 东北林业大学学报. 2025(04): 37-46 .

    Other cited types(5)

Catalog

    Article views (347) PDF downloads (54) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return