• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Cai, Zha Tianshan, Jia Xin, Liu Peng, Li Cheng. Dynamics and simulation of leaf area index for Artemisia ordosica community in the Mu Us Desert of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(3): 75-83. DOI: 10.13332/j.1000-1522.20170298
Citation: Zhang Cai, Zha Tianshan, Jia Xin, Liu Peng, Li Cheng. Dynamics and simulation of leaf area index for Artemisia ordosica community in the Mu Us Desert of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(3): 75-83. DOI: 10.13332/j.1000-1522.20170298

Dynamics and simulation of leaf area index for Artemisia ordosica community in the Mu Us Desert of northwestern China

More Information
  • Received Date: August 21, 2017
  • Revised Date: December 14, 2017
  • Published Date: February 28, 2018
  • ObjectiveOur objective here was to rapidly and accurately obtain long-term continuous LAI for Artemisia ordosica communities in the Mu Us Desert of northwestern China, which is of great importance for understanding the relationship between ecosystem processes and environmental changes.
    MethodWe measured LAI in a typical A. ordosica community using the LAI-2000 canopy analyzer (LI-COR, USA) from April to October in the growing season of 2013 and 2014, and obtained MODIS NDVI (NDVIMODIS) data for the same periods. Ground-based NDVI (NDVIground) was calculated from incident and reflected solar radiation and photosynthetically active radiation, which were measured by radiation sensors mounted on a tower in the center of the community. LAI measurements were used to examine seasonal changes and construct LAI models. Normalized effective accumulated temperature, NDVIground and NDVIMODIS were used to construct optimal LAI model for the community.
    ResultThe seasonal dynamics was consistent with the phenophases of A. ordosica and showed a hump-shaped pattern. LAI increased from April to late August, reached a peak in August (1.09 and 1.33m2/m2 in 2013 and 2014, respectively), remained relatively stable from early September to mid-September, and rapidly declined from late September due to the defoliation of A. ordosica. The optimal LAI model was NDVIground (R2=0.76, P < 0.01).
    ConclusionOur results indicate that long-term continuous LAI estimates for A. ordosica communities in the Mu Us Desert can be easily obtained using NDVI measurements and the model. The model can be used to understand and predict ecological impacts of climate change.
  • [1]
    Chen J M, Black T A. Defining leaf area index for non-flat leaves[J]. Plant, Cell & Environment, 1992, 15(4):421-429. doi: 10.1111-j.1365-3040.1992.tb00992.x/
    [2]
    王龑, 田庆久, 王琦, 等.杨树林全生长期LAI遥感估算模型适用性[J].生态学报, 2016, 36(8):2210-2216. http://d.old.wanfangdata.com.cn/Periodical/stxb201608012

    Wang Y, Tian Q J, Wang Q, et al. Study on the applicability of leaf area index estimation model in an aspen forest over a growth period[J]. Acta Ecologica Sinica, 2016, 36(8):2210-2216. http://d.old.wanfangdata.com.cn/Periodical/stxb201608012
    [3]
    Bonan G B. Land-atmosphere interactions for climate system models:coupling biophysical, biogeochemical, and ecosystem dynamical processes[J]. Remote Sensing of Environment, 1995, 51(1):57-73. doi: 10.1016/0034-4257(94)00065-U
    [4]
    Veroustraete F, Patyn J, Myneni R B. Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model[J]. Remote Sensing of Environment, 1996, 58(1):115-130. doi: 10.1016/0034-4257(95)00258-8
    [5]
    赵传燕, 沈卫华, 彭焕华.祁连山区青海云杉林冠层叶面积指数的反演方法[J].植物生态学报, 2009, 33(5):860-869. doi: 10.3773/j.issn.1005-264x.2009.05.004

    Zhao C Y, Shen W H, Peng H H. Methods for determining canopy leaf area index of Picea crassifolia forest in Qilian Mountains, China[J]. Chinese Journal of Plant Ecology, 2009, 33(5):860-869. doi: 10.3773/j.issn.1005-264x.2009.05.004
    [6]
    曾小平, 赵平, 饶兴权, 等.鹤山丘陵3种人工林叶面积指数的测定及其季节变化[J].北京林业大学学报, 2008, 30(5):33-38. http://j.bjfu.edu.cn/article/id/8743

    Zeng X P, Zhao P, Rao X Q, et al. Measurement of leaf area index of three plantations and their seasonal changes in Heshan hilly land[J]. Journal of Beijing Forestry University, 2008, 30(5):33-38. http://j.bjfu.edu.cn/article/id/8743
    [7]
    Xiao Z Q, Liang S L, Jiang B. Evaluation of four long time-series global leaf area index products[J]. Agricultural and Forest Meteorology, 2017, 246:218-230. doi: 10.1016/j.agrformet.2017.06.016
    [8]
    Ryu Y, Sonnentag O, Nilson T, et al. How to quantify tree leaf area index in an open savanna ecosystem:a multi-instrument and multi-model approach[J]. Agricultural and Forest Meteorology, 2010, 150(1):63-76. doi: 10.1016/j.agrformet.2009.08.007
    [9]
    Bréda N J J. Ground-based measurements of leaf area index:a review of methods, instruments and current controversies[J]. Journal of Experimental Botany, 2003, 54(392):2403-2417. doi: 10.1093/jxb/erg263
    [10]
    刘志理, 金光泽.光学仪器法测定叶面积指数季节变化的误差分析[J].林业科学, 2016, 52(9):11-21. http://d.old.wanfangdata.com.cn/Periodical/lykx201609002

    Liu Z L, Jin G Z. Bias analysis of seasonal changes of leaf area index derived from optical methods[J]. Scientia Silvae Sinicae, 2016, 52(9):11-21. http://d.old.wanfangdata.com.cn/Periodical/lykx201609002
    [11]
    温一博, 常颖, 范文义.基于MISR数据大兴安岭地区叶面积指数反演及尺度转换验证研究[J].北京林业大学学报, 2016, 38(5):1-10. doi: 10.13332/j.1000-1522.20150204

    Wen Y B, Chang Y, Fan W Y. Algorithm for leaf area index inversion in the Great Xing' an Mountains using MISR data and spatial scaling for the validation[J]. Journal of Beijing Forestry University, 2016, 38(5):1-10. doi: 10.13332/j.1000-1522.20150204
    [12]
    She W W, Zhang Y Q, Qin S G, et al. Habitat effect on allometry of a xeric shrub (Artemisia ordosica Krasch) in the Mu Us Desert of northern China[J]. Forests, 2015, 6(12):4529-4539. doi: 10.3390/f6124385
    [13]
    阎伟, 宗世祥, 骆有庆, 等.逐步回归模型在油蒿钻蛀性害虫预测中的应用[J].北京林业大学学报, 2009, 31 (3): 140-144. http://j.bjfu.edu.cn/article/id/8580

    Yan W, Zong S X, Luo Y Q, et al. Application of stepwise regression model in predicting the movement of Artemisia ordosica boring insects[J]. Journal of Beijing Forestry University, 2009, 31(3): 140-144. http://j.bjfu.edu.cn/article/id/8580
    [14]
    张军, 黄永梅, 焦会景, 等.毛乌素沙地油蒿群落演替的生理生态学机制[J].中国沙漠, 2007, 27(6):977-983. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsm200706012

    Zhang J, Huang Y M, Jiao H J, et al. Ecophysiological characteristics of Artemisia ordosica community succession in Mu Us Sandy grassland[J]. Journal of Desert Research, 2007, 27(6):977-983. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsm200706012
    [15]
    张德魁, 王继和, 马全林, 等.油蒿研究综述[J].草业科学, 2007, 24(8):30-35. doi: 10.3969/j.issn.1001-0629.2007.08.006

    Zhang D K, Wang J H, Ma Q L, et al. Summary of Artemisia ordosica studies[J]. Pratacultural Science, 2007, 24(8):30-35. doi: 10.3969/j.issn.1001-0629.2007.08.006
    [16]
    张军红, 吴波, 雷雅凯, 等.毛乌素沙地油蒿植株形态与结构特征分析[J].西南林业大学学报, 2011, 31(5):6-9. doi: 10.3969/j.issn.2095-1914.2011.05.002

    Zhang J H, Wu B, Lei Y K, et al. Analysis of Artemisia ordosica plant morphology and structure characteristics in Mu Us Sandland[J]. Journal of Southwest Forestry University, 2011, 31(5):6-9. doi: 10.3969/j.issn.2095-1914.2011.05.002
    [17]
    Xie J, Zha T S, Jia X, et al. Irregular precipitation events in control of seasonal variations in CO2 exchange in a cold desert-shrub ecosystem in northwest China[J]. Journal of Arid Environments, 2015, 120:33-41. doi: 10.1016/j.jaridenv.2015.04.009
    [18]
    唐思凌, 贾昕, 郭建斌, 等.沙蒿(Artemisia ordosica)叶面积指数的测定及模拟[J].生态学杂志, 2014, 33(2):547-554. http://d.old.wanfangdata.com.cn/Periodical/stxzz201402040

    Tang S L, Jia X, Guo J B, et al. Measuring and modeling leaf area index for Artemisia ordosica[J]. Chinese Journal of Ecology, 2014, 33(2):547-554. http://d.old.wanfangdata.com.cn/Periodical/stxzz201402040
    [19]
    孔德胤, 杨松, 黄淑琴, 等.河套地区玉米叶面积指数的动态模拟[J].中国农业气象, 2014, 35(3): 281-286. doi: 10.3969/j.issn.1000-6362.2014.03.007

    Kong D Y, Yang S, Huang S Q, et al. Dynamic simulation of maize leaf area index in Hetao region[J]. Chinese Journal of Agrometeorology, 2014, 35(3):281-286. doi: 10.3969/j.issn.1000-6362.2014.03.007
    [20]
    Huemmrich K F, Black T A, Jarvis P G, et al. High temporal resolution NDVI phenology from micrometeorological radiation sensors[J/OL]. Journal of Geophysical Research:Atmospheres, 1999, 104(D22):27935-27944[2017-06-13]. http://onlinelibrary.wiley.com/doi/10.1029/1999JD900164/citedby.
    [21]
    Wilson T B, Meyers T P. Determining vegetation indices from solar and photosynthetically active radiation fluxes[J]. Agricultural and Forest Meteorology, 2007, 144(3):160-179. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ021944193/
    [22]
    杜占池, 杨宗贵, 崔骁勇.内蒙古典型草原地区5类植物群落叶面积指数的比较研究[J].中国草地学报, 2001, 23(5):13-18. http://d.old.wanfangdata.com.cn/Periodical/zgcd200105003

    Du Z C, Yang Z G, Cui X Y. A comparative study on leaf area index of five plant communities in typical steppe region of Inner Mongolia[J]. Chinese Journal of Grassland, 2001, 23(5):13-18. http://d.old.wanfangdata.com.cn/Periodical/zgcd200105003
    [23]
    Huang L, Zhang Z S, Li X R. Sap flow of Artemisia ordosica and the influence of environmental factors in a revegetated desert area:Tengger Desert, China[J]. Hydrological Processes, 2010, 24(10):1248-1253. https://www.researchgate.net/publication/229927469_Sap_flow_of_Artemisia_ordosica_and_the_influence_of_environmental_factors_in_a_revegetated_desert_area_Tengger_Desert_China
    [24]
    Xiao B, Hu K L. Moss-dominated biocrusts decrease soil moisture and result in the degradation of artificially planted shrubs under semiarid climate[J]. Geoderma, 2017, 291:47-54. doi: 10.1016/j.geoderma.2017.01.009
    [25]
    Asner G P, Scurlock J M O, Hicke J A. Global synthesis of leaf area index observations:implications for ecological and remote sensing studies[J]. Global Ecology and Biogeography, 2003, 12(3):191-205. doi: 10.1046/j.1466-822X.2003.00026.x
    [26]
    邵璞, 曾晓东. CLM3.0-DGVM中植物叶面积指数与气候因子的时空关系[J].生态学报, 2011, 31(16):4725-4731. http://d.old.wanfangdata.com.cn/Periodical/gyqx200803001

    Shao P, Zeng X D. Spationtemporal relationship of leaf area index simulated by CLM3.0-DGVM and climatic factors[J]. Acta Ecologica Sinica, 2011, 31(16):4725-4731. http://d.old.wanfangdata.com.cn/Periodical/gyqx200803001
    [27]
    麻雪艳, 周广胜.春玉米最大叶面积指数的确定方法及其应用[J].生态学报, 2013, 33(8):2596-2603. http://d.old.wanfangdata.com.cn/Periodical/stxb201308031

    Ma X Y, Zhou G S. Method of determining the maximum leaf area index of spring maize and its application[J]. Acta Ecologica Sinica, 2013, 33(8):2596-2603. http://d.old.wanfangdata.com.cn/Periodical/stxb201308031
    [28]
    Wang Q, Adiku S, Tenhunen J, et al. On the relationship of NDVI with leaf area index in a deciduous forest site[J]. Remote Sensing of Environment, 2005, 94(2):244-255. doi: 10.1016/j.rse.2004.10.006
    [29]
    Bertram A, Clasen A, Kleinschmit B, et al. Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices[J/OL]. Remote Sensing of Environment, 2014, 141:52-63[2017-06-21]. http://www.sciencedirect.com/science/article/pii/S0034425713003866.
    [30]
    Street L E, Shaver G R, Williams M, et al. What is the relationship between changes in canopy leaf area and changes in photosynthetic CO2 flux in arctic ecosystems?[J]. Journal of Ecology, 2007, 95(1):139-150. doi: 10.1111/jec.2007.95.issue-1
    [31]
    Maire G L, François C, Soudani K, et al. Forest leaf area index determination:a multiyear satellite-independent method based on within-stand normalized difference vegetation index spatial variability[J]. Journal of Geophysical Research:Biogeosciences, 2006, 111(G2): 1967-1970. http://cn.bing.com/academic/profile?id=f8035fbb83829f900cae2b5bb00b54d9&encoded=0&v=paper_preview&mkt=zh-cn
    [32]
    Schleppi P, Thimonier A, Walthert L. Estimating leaf area index of mature temperate forests using regressions on site and vegetation data[J]. Forest Ecology and Management, 2011, 261(3):601-610. doi: 10.1016/j.foreco.2010.11.013
    [33]
    张学艺, 李剑萍, 官景得, 等.两种叶面积指数动态模拟方法的对比研究[J].国土资源遥感, 2011, 23(3):43-47. http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201103008

    Zhang X Y, Li J P, Guan J D, et al. A comparative study of two dynamic simulated methods for spring wheat leaf area index in Ningxia irrigation area[J]. Remote Sensing for Land & Resources, 2011, 23(3):43-47. http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201103008
    [34]
    刘珺, 庞鑫, 杜灵通.夏玉米叶面积指数遥感反演研究[J].农业机械学报, 2016, 47(9):309-317. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201609042

    Liu J, Pang X, Du L T. Study on leaf area index inversion of summer maize using remote sensing[J]. Transaction of the Chinese Society for Agricultural Machinery, 2016, 47(9):309-317. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201609042
    [35]
    彭虓, 张树文.基于NDVI与LAI的水稻生长状况研究[J].东北测绘, 2002, 25(4):16-19. doi: 10.3969/j.issn.1672-5867.2002.04.010

    Peng X, Zhang S W. Research on rice growth status based on NDVI and LAI[J]. Northeast Surveying and Mapping, 2002, 25(4):16-19. doi: 10.3969/j.issn.1672-5867.2002.04.010
    [36]
    Fan L, Gao Y, Brück H, et al. Investigating the relationship between NDVI and LAI in semi-arid grassland in Inner Mongolia using in-situ measurements[J]. Theoretical and Applied Climatology, 2009, 95(1-2):151-156. doi: 10.1007/s00704-007-0369-2
    [37]
    López-Serrano F R, García-Morote A, Andrés-Abellán M, et al. Site and weather effects in allometries:a simple approach to climate change effect on pines[J]. Forest Ecology and Management, 2005, 215(1-3):251-270. doi: 10.1016/j.foreco.2005.05.014
    [38]
    Wang X P, Fang J Y, Tang Z Y, et al. Climatic control of primary forest structure and DBH-height allometry in Northeast China[J]. Forest Ecology and Management, 2006, 234(1):264-274. doi: 10.1016-j.foreco.2006.07.007/
    [39]
    Maestre F T, Salguerogómez R, Quero J L. It is getting hotter in here:determining and projecting the impacts of global environmental change on drylands[J]. Philosophical Transactions of the Royal Society of London, 2012, 367:3062-3075. doi: 10.1098/rstb.2011.0323
  • Related Articles

    [1]Wang Xin, Tong Xiaojuan, Zhang Jinsong, Meng Ping, Xie Han, Hu Haiyang, Li Jun. Effects of photosynthesis on soil respiration of Quercus variabilis plantation in southern Taihang Mountain of northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 66-76. DOI: 10.12171/j.1000-1522.20200010
    [2]Ma Xiaodong, Li Xia, Liu Junxiang, Zhai Feifei, Sun Zhenyuan, Han Lei. Effects of Crucibulum laeve inoculation on photosynthesis of Salix viminalis cultivated in PAHs-contaminated soil[J]. Journal of Beijing Forestry University, 2020, 42(5): 80-87. DOI: 10.12171/j.1000-1522.20190340
    [3]Zhang Jiatong, Guan Yinghui, Si Liqing, Peng Xiawei, Meng Bingnan, Zhou Jinxing. Effects of Pb2+ and Cd2+ combined stress on photosynthesis of Morus alba[J]. Journal of Beijing Forestry University, 2018, 40(4): 16-23. DOI: 10.13332/j.1000-1522.20170332
    [4]SUN Yan-shuang, XING Bao-yue, YANG Guang, LIU Gui-feng. Effects of NaHCO3 stress on growth, photosynthesis and chlorophyll fluorescence characteristics in Populus davidiana × P. bolleana overexpressed TaLEA[J]. Journal of Beijing Forestry University, 2017, 39(10): 33-41. DOI: 10.13332/j.1000-1522.20170099
    [5]YANG Bo-wen, SUN Hai-long, WU Chu. Effects of phosphorus stress on photosynthesis and nitrogen assimilation of Fraxinus mandshurica seedlings[J]. Journal of Beijing Forestry University, 2015, 37(8): 18-23. DOI: 10.13332/j.1000-1522.20140417
    [6]ZHAO Juan, SONG Yuan, MAO Zi-jun. Response in photosynthesis and chlorophyll fluorescence of Quercus mongolica seedlings to the interaction of temperature and precipitation[J]. Journal of Beijing Forestry University, 2013, 35(1): 64-71.
    [7]LIN Xia, ZHENG Jian, CHEN Qiu-xia, KONG Qiang, YE Yan-ling. Effects of NaCl stress on photosynthesis and antioxidant activity in Ficus concinna var. subsessilis[J]. Journal of Beijing Forestry University, 2011, 33(4): 70-74.
    [8]ZHANG Peng-chong, HU Zeng-hui, SHEN Ying-bai, GAO Rong-fu. Effects of three types of wound on photosynthetic activity of Populus simonii × P. pyramidalis ‘Opera 8277’ seedlings[J]. Journal of Beijing Forestry University, 2010, 32(1): 35-38.
    [9]ZHAO Tian-hong, WANG Mei-yu, ZHAO Yi-xin, GUO Dan, HE Xing-yuan, FU Shi-lei. Effects of elevated atmospheric ozone concentration on photosynthetic mechanism of Pinus tabulaeformis Carr.[J]. Journal of Beijing Forestry University, 2009, 31(1): 31-36.
    [10]ZHU Jiao-jun, KANG Hong-zhang, LI Zhi-hui. Comparison of different types of drought stresses affecting photosynthesis of Mongolian pine seedlings on sandy soils[J]. Journal of Beijing Forestry University, 2006, 28(2): 57-63.
  • Cited by

    Periodical cited type(11)

    1. 李捷,孙文涛,庞晓攀,徐雪婷,杨欢,郭正刚. 高原鼠兔干扰对高寒草甸植物物种和功能性状beta多样性的影响. 生态学报. 2024(07): 2993-3003 .
    2. 尹才佳,马龙,邹书珍,康迪. 地震滑坡体恢复后植物β多样性格局及其环境响应. 西北植物学报. 2023(02): 316-325 .
    3. 陈瑶,余雯静,陈珑,郭汝凤,吴承祯,李键. 基于同质园的不同品种茶树叶性状变异及经济谱. 应用与环境生物学报. 2023(03): 720-729 .
    4. Jianghao ZHAO,Yingying LIU,Xiaoguo BAI,Anping LI,Yanjiao LI,Shiping CHENG,Guang QI. Phylogenetic Structure of Low Altitude Forest Communities in Baotianman Mountain. Asian Agricultural Research. 2022(06): 31-36 .
    5. 王健铭,曲梦君,王寅,冯益明,吴波,卢琦,何念鹏,李景文. 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素. 生物多样性. 2022(06): 62-75 .
    6. 杨欢,王寅,王健铭,夏延国,李景文,贾晓红,吴波. 环境过滤和扩散限制对库姆塔格沙漠南缘植物群落β-多样性的影响. 中国沙漠. 2021(03): 147-154 .
    7. 高辉,刘丽娟,方江平. 西藏色季拉山森林群落沿海拔梯度变化格局. 广西师范大学学报(自然科学版). 2020(06): 122-130 .
    8. 周昌艳,王彬,邓云,乌俊杰,曹敏,林露湘. 林冠结构是局域尺度木本植物功能性状beta多样性形成的重要驱动力. 生物多样性. 2020(12): 1546-1557 .
    9. 庞志强,姜丽莎,缪祥蓉,亓峥,卢炜丽. 昆明市主要园林植物叶性状及叶经济谱研究. 西南林业大学学报(自然科学). 2019(04): 53-60 .
    10. 刘丽杰,尹航,金慧,赵莹,贾翔. 基于生态文明视角下长白山生物多样性保护研究探索. 吉林农业. 2018(04): 97 .
    11. 朱济友,于强,刘亚培,覃国铭,李金航,徐程扬,何韦均. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报. 2018(09): 72-81 . 本站查看

    Other cited types(14)

Catalog

    Article views PDF downloads Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return