• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Guan Tianshuo, Wang Chunbo, Wang Wei, Yan Fei, Fan Yongxiang. Path planning method of mobile lidar in plantation sample plot survey[J]. Journal of Beijing Forestry University, 2024, 46(5): 154-162. DOI: 10.12171/j.1000-1522.20220273
Citation: Guan Tianshuo, Wang Chunbo, Wang Wei, Yan Fei, Fan Yongxiang. Path planning method of mobile lidar in plantation sample plot survey[J]. Journal of Beijing Forestry University, 2024, 46(5): 154-162. DOI: 10.12171/j.1000-1522.20220273

Path planning method of mobile lidar in plantation sample plot survey

More Information
  • Received Date: July 06, 2022
  • Revised Date: December 05, 2023
  • Accepted Date: December 05, 2023
  • Available Online: December 07, 2023
  • Objective 

    Forestry survey planning is important for the sustainable development of forestry. When using mobile lidar to do forest sample plot mapping and measurement, the accuracy of the global consistency map is closely related to the scanning trajectory. Therefore, the rational planning of sample plot observation path is of great significance.

    Method 

    In this study, the forest sample plots were scanned by the handheld lidar with the use of simultaneous localization and mapping (SLAM). Based on the researches in the application of SLAM technology and the characteristics of forest sample land, three handheld mobile lidar scanning path plans in the sample plots were proposed. And the point cloud map was constructed through LeGO-LOAM algorithm. Thus, the three paths were compared and analyzed in terms of mapping effects, the accuracy of diameter of standing wood chest and the accuracy of its position (curve fitting data).

    Result 

    The estimated diameter of the prototype stumpage chest diameter fitted by the progressive path 1 had a deviation of 2.18 cm, a relative deviation of 7.74%, and a root mean square error (RMSE) of 2.74 cm, and its accuracy was higher than the other two paths; path 1 fitted the rib diameter of the substation boundary standing wood and the internal standing wood better than path 2 and path 3; in terms of the standing wood position fitting accuracy, path 1 and path 3 had a better overall fitting effect, and the accuracy of path 1 was slightly better than path 3, with an x-axis estimated root mean square error (RMSE) of 0.077 m, a y-axis estimation root mean square error of 0.157 m, and a covariance difference of the maximum error direction of 0.124 m, all of which were smaller than the other two paths.

    Conclusion 

    When collecting data through 32-line lidar, with the use of point cloud mapping of the forest-like land and the LeGO-LOAM algorithm, to achieve the fit measurement of the single wood factor, the overall mapping effect and the measurement accuracy of the aerial photogrammetry route like path plan (Path 1) are relatively better than the other paths. Based on this path plan, the mapping and measurement accuracy can be further improved by increasing the ground identification point and increasing the distance between the scanning path boundary and the sample point boundary. This can provide a reasonable path plan design for ground mobile lidar field data acquisition.

  • [1]
    闫飞. 森林资源调查技术与方法研究 [D]. 北京: 北京林业大学, 2014.

    Yan F. Research of technology and method of forest resouce inventory[D]. Beijing: Beijing Forestry University, 2014.
    [2]
    徐诗宇, 施拥军, 冯晟斐. 基于三维激光点云的城市绿化树种材积及树干碳储量无损精确测算[J]. 浙江农林大学学报, 2018, 35(6): 1062−1069.

    Xu S Y, Shi Y J, Feng S F. Nondestructive and accurate measurement of volume and stem carbon storage for urban greening tree species based on terrestrial laser scanning point cloud[J]. Journal of Zhejiang A&F University, 2018, 35(6): 1062−1069.
    [3]
    郭庆华, 刘瑾, 陶胜利, 等. 激光雷达在森林生态系统监测模拟中的应用现状与展望[J]. 科学通报, 2014, 59(6): 459−478.

    Guo Q H, Liu J, Tao S L, et al. Current status and prospect of the application of lidar in forest ecosystem monitoring and simulation[J]. Chinese Science Bulletin, 2014, 59(6): 459−478.
    [4]
    Leeuwen M V, Nieuwenhuis M. Retrieval of forest structural parameters using LIDAR remote sensing[J]. European Journal of Forest Research, 2010, 129(4): 749−770.
    [5]
    陶江玥, 刘丽娟, 庞勇,等. 基于机载激光雷达和高光谱数据的树种识别方法[J]. 浙江农林大学学报, 2018, 35(2): 314−323. doi: 10.11833/j.issn.2095-0756.2018.02.016

    Tao J Y, Liu L J, Pang Y, et al. Automatic identification of tree species based on airborne LiDAR and hyperspectral data[J]. Journal of Zhejiang A&F University, 2018, 35(2): 314−323. doi: 10.11833/j.issn.2095-0756.2018.02.016
    [6]
    韩光瞬, 冯仲科, 刘永霞,等. 三维激光扫描系统测树原理及精度分析[J]. 北京林业大学学报, 2005, 27(2): 187−191.

    Han G S, Feng Z K, Liu Y X, et al. Forest measurement principles and precision analysis of three-dimensional laser scanning system[J]. Journal of Beijing Forestry University, 2005, 27(2): 187−191.
    [7]
    冯仲科, 罗旭. 基于三维激光扫描成像系统的树冠生物量研究[J]. 北京林业大学学报, 2007, 29(2): 52−56.

    Feng Z K , Luo X. An estimation of tree canopy biomass based on 3D laser scanning imaging system[J]. Journal of Beijing Forestry University, 2007, 29(2): 52−56.
    [8]
    蔡硕. 基于地基激光雷达和背包式激光雷达林木胸径提取[D]. 哈尔滨: 东北林业大学, 2021.

    Cai S. Extraction of tree diameter at breast height based on terrestrial laser scanning and backpack baser scanning[D]. Harbin: Northeast Forestry University, 2021.
    [9]
    Tang J, Chen Y, Kukko A, et al. SLAM-aided stem mapping for forest inventory with small-footprint mobile LiDAR[J]. Forests, 2015, 6(12): 4588−4606.
    [10]
    Shan T, Englot B, Meyers D, et al. Lio-sam: tightly-coupled lidar inertial odometry via smoothing and mapping[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York: IEEE, 2020: 5135−5142.
    [11]
    Zhang J, Singh S. LOAM: lidar odometry and mapping in real-time[C]. Robotics: Science and Systems, 2014: 109−111.
    [12]
    Shao J, Zhang W, Mellado N, et al. SLAM-aided forest plot mapping combining terrestrial and mobile laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 214−230.
    [13]
    范伟伟, 刘浩然, 徐永胜, 等. 基于地基激光雷达和手持式移动激光雷达的单木结构参数提取精度对比[J]. 中南林业科技大学学报, 2020, 40(8): 63−74.

    Fan W W, Liu H R, Xu Y S, et al. Comparison of extraction precision of individual tree structure parameters based on terrestrial laser scanning and hand-held mobile laser scanning[J]. Journal of Central South University of Forestry & Technology, 2020, 40(8): 63−74.
    [14]
    陈东鹏. 林业背包式激光雷达多传感器集成系统及数据融合的研究[D]. 哈尔滨: 东北林业大学, 2021.

    Chen D P. Study on forest backpack LiDAR multi-sensor integration system and data fusion[D]. Harbin: Northeast Forestry University, 2021.
    [15]
    蔡硕, 邢艳秋, 端木嘉龙. 背包式激光雷达滤除低强度点云提取林木胸径[J]. 森林工程, 2021, 37(5): 12−19.

    Cai S, Xing Y Q,Duanmu J L. Extraction of DBH from filtering out low intensity point cloud by backpack laser scanning[J]. Forest Engineering, 2021, 37(5): 12−19.
    [16]
    范永祥. 便携式 RGB-D SLAM 测树系统关键技术研究[D]. 北京: 北京林业大学, 2020.

    Fan Y X. Research on key technologies of portable RGB-D SLAM tree measurement system[D]. Beijing: Beijing Forestry University, 2020.
    [17]
    范永祥, 冯仲科, 陈盼盼, 等. 基于 RGB D SLAM 手机的森林样地调查系统研究[J]. 农业机械学报, 2019, 50(8): 226−234. doi: 10.6041/j.issn.1000-1298.2019.08.024

    Fan Y X, Feng Z K, Chen P P, et al. Research on forest plot survey system based on RGB D SLAM mobile phone[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8): 226−234. doi: 10.6041/j.issn.1000-1298.2019.08.024
    [18]
    范永祥, 冯仲科, 申朝永, 等. 基于改进LOAM的森林样地调查系统设计与试验[J]. 农业机械学报, 2022, 53(7): 291−300.

    Fan Y X, Feng Z K, Shen C Y, et al. Design and experiment of forest plot survey system based on improved LOAM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(7): 291−300.
    [19]
    刘威. 应用于移动机器人视觉SLAM的地点识别研究[D]. 杭州: 杭州电子科技大学, 2019.

    Liu W. Researh on place recognition of visual SLAM for mobile robot[D]. Hangzhou: Hangzhou Dianzi University, 2019.
    [20]
    Shan T, Englot B. Lego-loam: lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York: IEEE, 2018: 4758−4765.
    [21]
    Kim G, Choi S, Kim A. Scan context++: structural place recognition robust to rotation and lateral variations in urban environments[J]. IEEE Transactions on Robotics, 2021, 38(3): 1856−1874.
  • Related Articles

    [1]Hu Yingxin, Mei Anqi, Xu Qing, Hou Zhengyang. Using spatial distribution patterns and sample plot design to improve the accuracy of forest resource sampling survey[J]. Journal of Beijing Forestry University, 2024, 46(2): 155-165. DOI: 10.12171/j.1000-1522.20230061
    [2]Lü Jiaxin, Zhang Wuming, Zhou Zhongyan, Shao Jie. LiDAR based individual tree localization for sample plot inventory[J]. Journal of Beijing Forestry University, 2023, 45(1): 99-108. DOI: 10.12171/j.1000-1522.20220106
    [3]Mi Xiangcheng, Yu Jianping, Wang Ningning, Jia Wen, Ren Haibao, Chen Lei, Pang Yong, Ma Keping. Utilizing LiDAR technology to estimate forest aboveground biomass in Qianjiangyuan National Park, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2022, 44(10): 77-84. DOI: 10.12171/j.1000-1522.20220383
    [4]Qi Zhiyong, Li Shiming, Yue Wei, Liu Qingwang, Li Zengyuan. Forest gap identification in natural forest based on UAV LiDAR[J]. Journal of Beijing Forestry University, 2022, 44(6): 44-53. DOI: 10.12171/j.1000-1522.20210524
    [5]Chen Zhongchao, Liu Qingwang, Li Chungan, Li Mei, Zhou Xiangbei, Yu Zhu, Su Kai. Comparison in linear and nonlinear estimation models of carbon storage of plantations based on UAV LiDAR[J]. Journal of Beijing Forestry University, 2021, 43(12): 9-16. DOI: 10.12171/j.1000-1522.20200417
    [6]CAO Lin, DAI Jin-song, XU Jian-xin, XU Zi-qian, SHE Guang-hui. Optimized extraction of forest parameters in subtropical forests based on airborne small footprint LiDAR technology[J]. Journal of Beijing Forestry University, 2014, 36(5): 13-21. DOI: 10.13332/j.cnki.jbfu.2014.05.009
    [7]HUANG Hua-guo.. Progress analysis of LiDAR research on forestry science studies[J]. Journal of Beijing Forestry University, 2013, 35(4): 134-143.
    [8]ZHOU Yu-fei, LIU Peng-ju, TANG Xiao-ming. Space accuracy evaluation of forest fire spreading model[J]. Journal of Beijing Forestry University, 2010, 32(2): 21-26.
    [9]LIU Qing-wang, LI Zeng-yuan, CHEN Er-xue, PANG Yong, WU Hong-gan. Extracting height and crown of individual tree using airborne LIDAR data.[J]. Journal of Beijing Forestry University, 2008, 30(6): 83-89.
    [10]YU Yan, JIANG Ze-hui, WANG Ge, QIN Dao-chun, XU Zhong-yun. Effects of sample surface on the accuracy of near infrared predictive model of air dried density of bamboo[J]. Journal of Beijing Forestry University, 2007, 29(4): 80-83. DOI: 10.13332/j.1000-1522.2007.04.019
  • Cited by

    Periodical cited type(3)

    1. 张紫阳,刘艳,魏瑞研,林元震. 木本植物miRNAs参与环境胁迫应答的研究进展. 分子植物育种. 2021(16): 5372-5379 .
    2. 李金航,朱济友,Catherine Mhae B.Jandug,赵凯,徐程扬. 干旱胁迫环境中黄栌幼苗叶功能性状变异与产地地理-气候因子的关系. 北京林业大学学报. 2020(02): 68-78 . 本站查看
    3. 李双,苏艳艳,王厚领,李惠广,刘超,夏新莉,尹伟伦. 胡杨miR1444b在拟南芥中正调控植物抗旱性. 北京林业大学学报. 2018(04): 1-9 . 本站查看

    Other cited types(2)

Catalog

    Article views (442) PDF downloads (78) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return