• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Qianqian, He Kangning, Zuo Yafan, Cheng Chang, Zou Xingchen, Liu Jingwen, Shi Zhengyang, Li Rui, Peng Xiaojing. Spatiotemporal changes and driving forces of vegetation NPP in transition zone between the Loess Plateau and Qinghai Tibet Plateau: a case study of Datong County, Qinghai Province of northwestern China[J]. Journal of Beijing Forestry University, 2025, 47(1): 39-50. DOI: 10.12171/j.1000-1522.20240193
Citation: Liu Qianqian, He Kangning, Zuo Yafan, Cheng Chang, Zou Xingchen, Liu Jingwen, Shi Zhengyang, Li Rui, Peng Xiaojing. Spatiotemporal changes and driving forces of vegetation NPP in transition zone between the Loess Plateau and Qinghai Tibet Plateau: a case study of Datong County, Qinghai Province of northwestern China[J]. Journal of Beijing Forestry University, 2025, 47(1): 39-50. DOI: 10.12171/j.1000-1522.20240193

Spatiotemporal changes and driving forces of vegetation NPP in transition zone between the Loess Plateau and Qinghai Tibet Plateau: a case study of Datong County, Qinghai Province of northwestern China

More Information
  • Received Date: June 13, 2024
  • Revised Date: August 24, 2024
  • Available Online: January 08, 2025
  • Objective 

    This paper explores the spatiotemporal variation characteristics and their driving factors of net primary productivity (NPP) of vegetation in Datong County, Qinghai Province of northwestern China, so as to provide data support for evaluating the sustainability and productivity of regional ecosystem.

    Method 

    Using MOD17A3, terrain, meteorological, and human activity data, vegetation NPP in Datong County was analyzed through methods such as trend analysis, partial correlation analysis, land use transfer matrix, and optimal geographic detector.

    Result 

    (1) From 2000 to 2019, the multi-year average NPP value in Datong County was 331.77 g/m2 (calculated by C, the same applies below), increasing at a rate of 2.29 g/(m2·year), with a distribution pattern characterized by higher values in the southeast and lower values in the northwest. The contribution rate of grassland vegetation to NPP was the highest. Significant increases were observed in 70.10% of the area, while only 0.51% significantly decreased. (2) The increase in vegetation NPP was driven by both climate change and human activities, with spatial heterogeneity from various driving factors. Precipitation, sunshine duration and temperature showed positive correlations with vegetation NPP in the southeastern, northwestern, and entire region of Datong County, respectively. Population density and GDP respectively had a promoting effect on vegetation NPP in high-altitude grasslands and low-altitude afforestable areas. (3) Temperature, precipitation and elevation were the dominant factors affecting spatial variations of vegetation NPP, and the interaction among driving factors were dual-factor enhancement and nonlinear enhancement. When the elevation, slope, annual precipitation, annual temperature, and population density were 2 840−3 150 m, 4.18°−10.80°, 441−677 mm, 1.18−3.56 ℃, and 126−413 person/km2, respectively, the growth of vegetation NPP can be promoted effectively.

    Conclusion 

    In most areas of Datong County, vegetation NPP has shown a significant increasing trend, with both climate change and human activities contributing favorably to vegetation growth. The results are helpful to further understand the potential driving mechanism of NPP changes in the Loess Plateau and Qinghai Tibet Plateau transition zone, which holds significant implications for regional ecological conservation and sustainable development.

  • [1]
    朴世龙, 方精云, 郭庆华. 1982—1999年我国植被净第一性生产力及其时空变化[J]. 北京大学学报(自然科学版), 2001, 37(4): 563−569.

    Piao S L, Fang J Y, Guo Q H. Terrestrial net primary production and its spatio-temporal patterns in China during 1982–1999[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2001, 37(4): 563−569.
    [2]
    Cuo L, Zhang Y, Xu R, et al. Decadal change and inter-annual variability of net primary productivity on the Tibetan Plateau[J]. Climate Dynamics, 2021, 56: 1837−1857. doi: 10.1007/s00382-020-05563-1
    [3]
    Liu Y Y, Yang Y, Wang Q, et al. Evaluating the responses of net primary productivity and carbon use efficiency of global grassland to climate variability along an aridity gradient[J]. Science of the Total Environment, 2019, 652: 671−682. doi: 10.1016/j.scitotenv.2018.10.295
    [4]
    Ge W Y, Deng L Q, Wang F, et al. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016[J/OL]. Science of the Total Environment, 2021, 773: 145648[2024−02−19]. https://doi.org/10.1016/j.scitotenv.2021.145648.
    [5]
    杨楠, 王凌雨, 朱琳, 等. 黄河流域近十年NPP变化特征及驱动因子分析[J]. 应用基础与工程科学学报, 2023, 31(2): 280−295.

    Yang N, Wang L Y, Zhu L, et al. NPP variation characteristics and driving factors of the Yellow River Valley in the last decade[J]. Journal of Basic Science and Engineering, 2023, 31(2): 280−295.
    [6]
    Wang S Y, Zhang B, Yang Q C, et al. Responses of net primary productivity to phenological dynamics in the Tibetan Plateau, China[J]. Agricultural and Forest Meteorology, 2017, 232: 235−246. doi: 10.1016/j.agrformet.2016.08.020
    [7]
    杨灿, 魏天兴, 李亦然, 等. 黄土高原水蚀风蚀交错区退耕还林工程前后NDVI时空变化特征[J]. 北京林业大学学报, 2021, 43(6): 83−91. doi: 10.12171/j.1000-1522.20210128

    Yang C, Wei T X, Li Y R, et al. Spatiotemporal variations of NDVI before and after implementation of Grain for Green Project in wind-water erosion crisscross region of the Loess Plateau[J]. Journal of Beijing Forestry University, 2021, 43(6): 83−91. doi: 10.12171/j.1000-1522.20210128
    [8]
    徐勇, 黄海艳, 戴强玉, 等. 西南地区陆地植被生态系统NPP时空演变及驱动力分析[J]. 环境科学, 2023, 44(5): 2704−2714.

    Xu Y, Huang H Y, Dai Q Y, et al. Spatial-temporal variation in net primary productivity in terrestrial vegetation ecosystems and its driving forces in Southwest China[J]. Environmental Science, 2023, 44(5): 2704−2714.
    [9]
    谢慧君, 谢亚巍, 曹聪, 等. 重庆市植被净初级生产力时空变化特征及驱动力分析[J]. 长江流域资源与环境, 2023, 32(12): 2581−2597.

    Xie H J, Xie Y W, Cao C, et al. Spatial-temporal variation characteristics and driving forces of vegetation net primary productivity in Chongqing[J]. Resources and Environment in the Yangtze Basin, 2023, 32(12): 2581−2597.
    [10]
    李燕丽, 潘贤章, 王昌昆, 等. 2000—2011年广西植被净初级生产力时空分布特征及其驱动因素[J]. 生态学报, 2014, 34(18): 5220−5228.

    Li Y L, Pan X Z, Wang C K, et al. Changes of vegetation net primary productivity and its driving factors from 2000 to 2011 in Guangxi, China[J]. Acta Ecologica Sinica, 2014, 34(18): 5220−5228.
    [11]
    闫丰, 李晨阳, 王靖, 等. 京津冀生态屏障区植被NPP时空演变驱动力定量解析[J/OL]. 环境科学: 1–27[2024−06−04]. https://doi.org/10.13227/j.hjkx.202402008.

    Yan F, Li C Y, Wang J, et al. Quantitative analysis of the drivers of the spatio-temporal evolution of vegetation NPP in the Beijing-Tianjin-Hebei Ecological Barrier Area[J/OL]. Environmental Science: 1–27[2024−06−04]. https://doi.org/10.13227/j.hjkx.202402008.
    [12]
    王诗绮, 刘焱序, 李琰, 等. 近20年黄土高原生态系统服务研究进展[J]. 生态学报, 2023, 43(1): 26−37.

    Wang S Q, Liu Y X, Li Y, et al. Research progress on the ecosystem services on the Loess Plateau during the recent 20 years[J]. Acta Ecologica Sinica, 2023, 43(1): 26−37.
    [13]
    岳笑, 张良侠, 周德成, 等. 基于植被净初级生产力的青藏高原地区生态脆弱性及其控制因子分析[J]. 地理科学, 2024, 44(1): 140−148.

    Yue X, Zhang L X, Zhou D C, et al. Ecological vulnerability and its driving forces of the Qinghai-Xizang Plateau based on the net primary productivity of vegetation[J]. Scientia Geographica Sinica, 2024, 44(1): 140−148.
    [14]
    杨艳, 周德成, 宫兆宁, 等. 基于植被生产力的黄土高原地区生态脆弱性及其控制因子分析[J]. 生态环境学报, 2022, 31(10): 1951−1958.

    Yang Y, Zhou D C, Gong Z N, et al. Ecological vulnerability and its drivers of the Loess Plateau based on vegetation productivity[J]. Ecology and Environment, 2022, 31(10): 1951−1958.
    [15]
    孙鸿烈, 郑度, 姚檀栋, 等. 青藏高原国家生态安全屏障保护与建设[J]. 地理学报, 2012, 67(1): 3−12. doi: 10.11821/xb201201001

    Sun H L, Zheng D, Yao T D, et al. Protection and construction of the national ecological security shelter zone on Tibetan Plateau[J]. Acta Geographica Sinica, 2012, 67(1): 3−12. doi: 10.11821/xb201201001
    [16]
    涂海洋, 古丽·加帕尔, 于涛, 等. 中国陆地生态系统净初级生产力时空变化特征及影响因素[J]. 生态学报, 2023, 43(3): 1219−1233.

    Tu H Y, Jiapaer G L, Yu T, et al. Analysis of spatio-temporal variation characteristics and influencing factors of net primary productivity in terrestrial ecosystems of China[J]. Acta Ecologica Sinica, 2023, 43(3): 1219−1233.
    [17]
    Zuo Y F, Gao J W, He K N. Interactions among ecosystem service key factors in vulnerable areas and their response to landscape patterns under the National Grain to Green Program[J]. Land Degradation & Development, 2023, 35(2): 898−915.
    [18]
    左婵, 王军邦, 张秀娟, 等. 三江源国家公园植被净初级生产力变化趋势及影响因素[J]. 生态学报, 2022, 42(14): 5559−5573.

    Zuo C, Wang J B, Zhang X J, et al. Changes and influencing factors of vegetation net primary productivity in the Sanjiangyuan National Park[J]. Acta Ecologica Sinica, 2022, 42(14): 5559−5573.
    [19]
    任丽雯, 王兴涛, 刘明春, 等. 石羊河流域植被净初级生产力时空变化及驱动因素[J]. 干旱区研究, 2023, 40(5): 818−828.

    Ren L W, Wang X T, Liu M C, et al. Temporal and spatial changes and the driving factors of vegetation NPP in Shiyang River Basin[J]. Arid Zone Research, 2023, 40(5): 818−828.
    [20]
    Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907−3925. doi: 10.5194/essd-13-3907-2021
    [21]
    徐建华. 现代地理学中的数学方法[M]. 3版. 北京: 高等教育出版社, 2017.

    Xu J H. Mathematical methods in contemporary geography[M]. 3rd Ed. Beijing: Higher Education Press, 2017.
    [22]
    王秀兰, 包玉海. 土地利用动态变化研究方法探讨[J]. 地理科学进展, 1999, 18(1): 83–89.

    Wang X L, Bao Y H. Study on the methods of land use dynamic change research[J]. Progress in Geography 1999, 18(1): 83–89.
    [23]
    王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116−134. doi: 10.11821/dlxb201701010

    Wang J F, Xu C D. Geodetector: principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116−134. doi: 10.11821/dlxb201701010
    [24]
    Song Y Z, Wang J F, Ge Y, et al. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: cases with different types of spatial data[J]. GIScience & Remote Sensing, 2020, 57(5): 593−610.
    [25]
    王军邦, 刘纪远, 邵全琴, 等. 基于遥感–过程耦合模型的1988 ~ 2004年青海三江源区净初级生产力模拟[J]. 植物生态学报, 2009, 33(2): 254–269.

    Wang J B, Liu J Y, Shao Q Q, et al. Spatial-temporal patterns of net primary productivity for 1988–2004 based on GLOPEM-CEVSA model in the “Three-River Headwaters” region of Qinghai Province, China[J]. Chinese Journal of Plant Ecology, 2009, 33(2): 254–269.
    [26]
    邵全琴, 樊江. 三江源区生态系统综合监测与评估[M]. 北京: 科学出版社, 2012.

    Shao Q Q, Fan J. Integrated monitoring and evaluation of ecosystems in the Three-River Headwater Region[M]. Beijing: Science Press, 2012.
    [27]
    沃笑, 吴良才, 张继平, 等. 基于CASA模型的三江源地区植被净初级生产力遥感估算研究[J]. 干旱区资源与环境, 2014, 28(9): 45−50.

    Wo X, Wu L C, Zhang J P, et al. Estimation of net primary production in the Three-River Headwater Region using CASA model[J]. Journal of Arid Land Resources and Environment, 2014, 28(9): 45−50.
    [28]
    刘亚荣. 基于AVIM2模型的祁连山植被净初级生产力的时空变化特征及未来变化趋势预测[D]. 兰州: 西北师范大学, 2015.

    Liu Y R. The spatiotemporal variation characteristics of primary net productivity of Qilian Mountain vegetation based on the AVIM2 model and prediction of future changing trends[D]. Lanzhou: Northwest Normal University, 2015.
    [29]
    Yuan Q Z, Wu S H, Zhao D S, et al. Modeling net primary productivity of the terrestrial ecosystem in China from 1961 to 2005[J]. Journal of Geographical Sciences, 2014, 24(1): 3−17. doi: 10.1007/s11442-014-1069-3
    [30]
    赵国帅. 基于光能利用率模型的青海植被净初级生产力模拟研究[D]. 哈尔滨: 东北林业大学, 2011.

    Zhao G S. The simulation study of net primary productivity of Qinghai vegetation based on the light use efficiency model[D]. Harbin: Northeast Forestry University, 2011.
    [31]
    朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 31(3): 413−424. doi: 10.3321/j.issn:1005-264X.2007.03.010

    Zhu W Q, Pan Y Z, Zhang J S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing[J]. Journal of Plant Ecology, 2007, 31(3): 413−424. doi: 10.3321/j.issn:1005-264X.2007.03.010
    [32]
    罗天祥. 中国主要森林类型生物生产力格局及其数学模型[D]. 北京: 中国科学院, 1996.

    Luo T X. Patterns of net primary productivity for Chinese major forest types and their mathematical models[D]. Beijing: Chinese Academy of Sciences, 1996.
    [33]
    程杰. 黄土高原草地植被分布与气候响应特征[D]. 杨凌: 西北农林科技大学, 2011.

    Cheng J. Response of grassland vegetations distribution to climate change in Loess Plateau[D]. Yangling: Northwest A&F University, 2011.
    [34]
    王川, 王丽莎, 张勇勇, 等. 2000—2020年祁连山植被净初级生产力时空变化及其驱动因素[J]. 生态学报, 2023, 43(23): 9710−9720.

    Wang C, Wang L S, Zhang Y Y, et al. Spatiotemporal change and driving factors of net primary productivity in Qilian Mountains from 2000 to 2020[J]. Acta Ecologica Sinica, 2023, 43(23): 9710−9720.
    [35]
    宋昌素, 肖燚, 博文静, 等. 生态资产评价方法研究: 以青海省为例[J]. 生态学报, 2019, 39(1): 9−23. doi: 10.1016/j.chnaes.2018.07.003

    Song C S, Xiao Y, Bo W J, et al. The ecological asset accounting method study: a case study of Qinghai Province[J]. Acta Ecologica Sinica, 2019, 39(1): 9−23. doi: 10.1016/j.chnaes.2018.07.003
    [36]
    刘旻霞, 焦骄, 潘竟虎, 等. 青海省植被净初级生产力(NPP)时空格局变化及其驱动因素[J]. 生态学报, 2020, 40(15): 5306−5317.

    Liu M X, Jiao J, Pan J H, et al. Spatial and temporal patterns of planting NPP and its driving factors in Qinghai Province[J]. Acta Ecologica Sinica, 2020, 40(15): 5306−5317.
    [37]
    李文斌, 曹生奎, 曹广超, 等. 2000—2020年青海湖流域植被净初级生产力时空格局及驱动分析[J]. 水土保持研究, 2024, 31(5): 327−336, 343.

    Li W B, Cao S K, Cao G C, et al. Spatiotemporal patterns of vegetation net primary productivity and their drivers in Qinghai Lake Basin from 2000 to 2020[J]. Research of Soil and Water Conservation, 2024, 31(5): 327−336, 343.
    [38]
    杨安乐, 张小平, 李宗省, 等. 气候变化和人类活动对祁连山国家公园植被净初级生产力的定量影响[J]. 生态学报, 2023, 43(5): 1784−1792.

    Yang A L, Zhang X P, Li Z X, et al. Quantitative analysis of the impacts of climate change and human activities on vegetation NPP in the Qilian Mountain National Park[J]. Acta Ecologica Sinica, 2023, 43(5): 1784−1792.
    [39]
    同琳静, 刘洋洋, 王倩, 等. 青藏高原草地降水利用效率时空动态及对气候变化的响应[J]. 干旱地区农业研究, 2019, 37(5): 226−234. doi: 10.7606/j.issn.1000-7601.2019.05.33

    Tong L J, Liu Y Y, Wang Q, et al. Spatial-temporal dynamics of precipitation use efficiency in grassland and its relationship with climate changes on Qinghai-Tibet Plateau[J]. Agricultural Research in the Arid Areas, 2019, 37(5): 226−234. doi: 10.7606/j.issn.1000-7601.2019.05.33
    [40]
    周益, 陈德超, 张委伟, 等. 太湖流域植被NPP时空特征及其驱动因素研究[J]. 遥感信息, 2022, 37(6): 94−100. doi: 10.3969/j.issn.1000-3177.2022.06.014

    Zhou Y, Chen D C, Zang W W, et al. Study on spatiotemporal characteristics and driving factors of vegetation NPP in Taihu Lake Basin[J]. Remote Sensing Information, 2022, 37(6): 94−100. doi: 10.3969/j.issn.1000-3177.2022.06.014
    [41]
    陈欢, 任志远. 中国大陆植被覆盖对降水与温度变化的响应[J]. 水土保持通报, 2013, 33(2): 78−82, 4.

    Chen H, Ren Z Y. Response of vegetation coverage to changes of precipitation and temperature in Chinese mainland[J]. Bulletin of Soil and Water Conservation, 2013, 33(2): 78−82, 4.
  • Related Articles

    [1]Jin Siyu, Peng Zuodeng. Changes in response of carbon and water physiological parameters of Robinia pseudoacacia seedlings to long-term drought and rehydration[J]. Journal of Beijing Forestry University, 2023, 45(8): 43-56. DOI: 10.12171/j.1000-1522.20220096
    [2]Zhou Cheng, Liu Tong, Wang Qinggui, Han Shijie. Effects of long-term nitrogen addition on fine root morphological, anatomical structure and stoichiometry of broadleaved Korean pine forest[J]. Journal of Beijing Forestry University, 2022, 44(11): 31-40. DOI: 10.12171/j.1000-1522.20210212
    [3]Zou Qingqin, Wang Yisong, Jiang Zhiyan, Chen Xiangwei, Wang Xiuwei. Non-structural carbohydrate allocation and interspecific differences of different soil and water conservation tree species in typical black soil region[J]. Journal of Beijing Forestry University, 2021, 43(10): 1-8. DOI: 10.12171/j.1000-1522.20210233
    [4]Wang Lina, Wu Junwen, Dong Qiong, Shi Zhuogong, Hu Haocheng, Wu Danzi, Li Luping. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70-82. DOI: 10.12171/j.1000-1522.20210115
    [5]Zhang Jianjun, Chen Liqi, Li Jianguang, Sun Miao, Fan Yongming, Yu Xiaonan. Anatomical structure characteristics and growth ring analysis of underground rhizome of herbaceous peony[J]. Journal of Beijing Forestry University, 2020, 42(5): 124-131. DOI: 10.12171/j.1000-1522.20190096
    [6]LI Wei-yi, ZHANG Qiu-hui, ZHAO Guang-jie.. Structure and properties characterization of the flame retardant wood wallpaper.[J]. Journal of Beijing Forestry University, 2016, 38(7): 91-97. DOI: 10.13332/j.1000-1522.20150453
    [7]YAN Guo-yong, WANG Xiao-chun, XING Ya-juan, HAN Shi-jie, WANG Qing-gui. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36-43. DOI: 10.13332/j.1000-1522.20150433
    [8]LI Ji-ping, FENG Yao, ZHAO Chun-yan, ZHANG Cai-cai. Quantitative analysis of stand spatial structure of Cunninghamia lanceolata non-commercial forest based on Voronoi diagram.[J]. Journal of Beijing Forestry University, 2014, 36(4): 1-7. DOI: 10.13332/j.cnki.jbfu.2014.04.005
    [9]WU Sha-sha, PENG Dong-hui, LI Wen-qi, WANG Jing-mao, L&ucirc, Ying-min. Carbohydrate metabolism and activity variation of related enzymes during the exchanging role of bulb source and sink of oriental hybrid lily ‘Sorbonne'[J]. Journal of Beijing Forestry University, 2013, 35(6): 96-102.
    [10]ZHAO Yan-xia, LUO You-qing, ZONG Shi-xiang, WANG Rong1, LUO Hong-mei. Comparison in leaf anatomical structure and drought resistance of different sex and varieties of sea buckthorn[J]. Journal of Beijing Forestry University, 2012, 34(6): 34-41.
  • Cited by

    Periodical cited type(34)

    1. 孙丽,张颖,李文彬,包红光,孙迎坤. 青岛市3种常绿灌木滞尘量与叶微观特征及光合作用等的相关性分析. 西北林学院学报. 2024(04): 232-241 .
    2. 裴云霞,洪慧,包美玲,邓俊,陈岷轩,张强. 农业环境损害鉴定中受体植物的损害因素判别及损害程度分析. 中国司法鉴定. 2024(04): 40-48 .
    3. 贺丹,李朝梅,华超,李思洁,雷雅凯,张曼. 郑州市10种园林植物叶片滞尘与富集重金属的能力. 西北林学院学报. 2023(01): 230-237 .
    4. 张碧媛,李智琦,阮琳,潘勇军,陈国财,代色平,冯娴慧. 2种常用的植物滞纳能力测定方法对比研究. 林业与环境科学. 2023(01): 112-119 .
    5. 罗建平,王宁,宋菲菲,魏汉博,原白玉,唐钰鑫. 大庆市6种绿化树种对SO_2、NO_2的消减及滞尘效应. 生态学报. 2023(11): 4561-4569 .
    6. 张翠,马瑞,谭立佳,杜婉倩,刘涵科. 兰州市10种常用园林绿化树种叶表面微结构对其滞尘量的影响. 甘肃农业大学学报. 2023(04): 192-200+211 .
    7. 廖慧敏,师凤起,李明,朱逸龙. 长沙市典型园林植物叶片的滞尘等级与模式识别研究. 生态环境学报. 2022(01): 110-116 .
    8. 贺丹,汪安印,李紫萱,王翼飞,李朝梅,雷雅凯,李永华,董娜琳. 郑州市常绿树种滞尘能力与叶片生理结构的响应. 福建农业学报. 2022(02): 203-212 .
    9. 李晓璐,叶锦东,章剑,周毅烈,袁楚阳,于慧,张天然,黄芳,张贵豪,邵锋. 乔木滞留大气颗粒物能力及其与叶表面微结构关系. 中国城市林业. 2022(03): 22-28+120 .
    10. 王军梦,汪安印,王翼飞,贺丹,李永华,董娜琳. 不同污染程度下树种滞尘能力与叶表微形态关系研究. 林业调查规划. 2022(05): 16-21+37 .
    11. 孟畅,彭洋,赵杨,王秀荣,肖枫. 2种叶型膏桐幼苗的形态结构和光合特性. 林业科学. 2022(12): 32-41 .
    12. 岳晨,李广德,席本野,曹治国. 叶片大气颗粒物滞纳能力评估方法的定量对比. 环境科学. 2021(01): 114-126 .
    13. 徐立人,刘宠,张军,柳俊明,王立成,李清泉,杨敏生,李彦慧. 单叶刺槐半同胞子代叶片的滞尘能力及叶表SEM特征分析. 西部林业科学. 2021(01): 124-131 .
    14. 杨克彤,陈国鹏,李广,汤东,张凯. 兰州市常见阔叶树种对大气颗粒物吸滞能力的评估. 东北林业大学学报. 2021(05): 84-89 .
    15. 刘宇,张楠,王晓立,周力行,韩浩章. 冬季苏北8种常绿乔木吸滞颗粒物能力与叶表微结构关系. 西北林学院学报. 2021(03): 80-87+127 .
    16. 王薇,张蕾. 基于CiteSpace的城市环境中细颗粒物研究进展的可视化分析. 生态环境学报. 2021(06): 1321-1332 .
    17. 谢长坤,郭健康,梁安泽,汪静,姜睿原,车生泉. 园林植物表面对大气颗粒物削减过程研究进展. 世界林业研究. 2021(05): 38-43 .
    18. 吴桂香,徐成林,刘杰,杨燕飞. 城市道路植物叶面滞尘的微观效应研究. 昆明理工大学学报(自然科学版). 2021(06): 109-115 .
    19. 陈胜楠,陈左司南,张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应. 植物生态学报. 2021(12): 1329-1340 .
    20. 王琴,冯晶红,黄奕,王鹏程,谢梦婷,万好,苏泽琳,王仁鹏,王征洋,余刘思. 武汉市15种阔叶乔木滞尘能力与叶表微形态特征. 生态学报. 2020(01): 213-222 .
    21. 童凌云,何婉璎,裘璐函,陈健,刘美华. 基于层次分析法的杭州市8种园林植物林分环境质量评价. 浙江林业科技. 2020(01): 56-62 .
    22. 苏维,刘苑秋,赖胜男,古新仁,刘青,龚鹏. 南昌市8种乔木叶片性状对叶表滞留颗粒物的影响. 西北林学院学报. 2020(04): 61-67 .
    23. 刘开琳,李学敏,万翔,刘淑娟,李菁菁,徐先英,刘虎俊. 民勤植物园3种灌木的叶面微结构及其滞尘能力研究. 中国农学通报. 2020(26): 62-68 .
    24. 孙应都,陈奇伯,李艳梅,杨思莹. 昆明市6个绿化树种叶表微结构与滞尘能力的关系研究. 西南林业大学学报(自然科学). 2019(03): 78-85 .
    25. 张俊叶,邹明,刘晓东,王林,朱晨晨,俞元春. 南京城市森林植物叶面颗粒物的含量特征. 环境污染与防治. 2019(07): 837-843 .
    26. 林星宇,李海梅,李彦华,姜月梅. 八种乔木滞尘效益及其与叶表面特征关系. 北方园艺. 2019(17): 94-101 .
    27. 林星宇,李海梅,李彦华,刘志科. 灌木滞尘能力与重金属含量间的关系. 江苏农业科学. 2019(15): 180-183 .
    28. 姜霞,侯贻菊,刘延惠,舒德远,崔迎春,李成龙,杨冰,丁访军. 3种木樨科树种叶片滞尘效应动态变化及其与叶片特征的关系. 江苏农业科学. 2019(16): 150-154 .
    29. 林星宇,李彦华,李海梅,李士美. 乔木对不同粒径颗粒物吸滞作用研究. 福建农业学报. 2019(08): 912-919 .
    30. 阿丽亚·拜都热拉,甄敬,潘存德,张中远,胡梦玲,喀哈尔·扎依木. 乌鲁木齐市河滩快速路林带内颗粒物浓度变化特征. 新疆农业大学学报. 2019(05): 378-384 .
    31. 林星宇,李海梅,李彦华,郑茗月. 5种灌木的滞尘效益研究. 现代农业科技. 2018(02): 150-151+155 .
    32. 赵文君,侯贻菊,舒德远,刘延惠,崔迎春,丁访军. 贵阳市木兰科树种叶片滞尘效应及影响因素. 贵州林业科技. 2018(02): 19-24 .
    33. 李艳梅,陈奇伯,王邵军,孙应都,杨淏舟,杨思莹. 昆明市主要绿化树种叶片滞尘能力的叶表微形态学解释. 林业科学. 2018(05): 18-29 .
    34. 朱济友,于强,刘亚培,覃国铭,李金航,徐程扬,何韦均. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报. 2018(09): 72-81 . 本站查看

    Other cited types(26)

Catalog

    Article views (138) PDF downloads (34) Cited by(60)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return