Citation: | Jia Haonan, Xu Huadong, Wang Lihai, Zhang Jinsheng, Chu Xiaohui, Tang Xu. Quantitative identification of surface defects in wood paneling based on improved YOLOv5[J]. Journal of Beijing Forestry University, 2023, 45(4): 147-155. DOI: 10.12171/j.1000-1522.20220419 |
[1] |
谢永华. 数字图像处理技术在木材表面缺陷检测中的应用研究[D]. 哈尔滨: 东北林业大学, 2013.
Xie Y H. The application and research of digital image processing on wood surface texture inspection[D]. Harbin: Northeast Forestry University, 2013.
|
[2] |
Akhyar F, Novamizanti L, Putra T, et al. Lightning YOLOv4 for a surface defect detection system for sawn lumber[C]//Jay K C C, Klara N, Yong R, et al. IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR). New York: IEEE, 2022: 184−189.
|
[3] |
肖雨晴, 杨慧敏, 王柯欣, 等. 卷积神经网络在木材缺陷检测应用中的研究进展[J]. 木材科学与技术, 2021, 35(3): 12−18. doi: 10.12326/j.2096-9694.2020088
Xiao Y Q, Yang H M, Wang K X, et al. Research progress of convolutional neural network in wood defect detection[J]. Wood Science and Technology, 2021, 35(3): 12−18. doi: 10.12326/j.2096-9694.2020088
|
[4] |
Xia B, Luo H, Shi S. Improved faster R-CNN based surface defect detection algorithm for plates[J]. Computational Intelligence and Neuroscience, 2022, 2022: 11−22.
|
[5] |
Mu H, Zhang M, Qi D, et al. Wood defects recognition based on fuzzy bp neural network[J]. International Journal of Smart Home, 2015, 9: 143−152.
|
[6] |
Yang Y, Zhou X, Liu Y, et al. Wood defect detection based on depth extreme learning machine[J]. Applied Sciences, 2020, 10(21): 7488. doi: 10.3390/app10217488
|
[7] |
Mu H, Zhang M, Qi D, et al. The application of RBF neural network in the wood defect detection[J]. International Journal of Hybrid Information Technology, 2015, 8(2): 41−50. doi: 10.14257/ijhit.2015.8.2.04
|
[8] |
李超, 刘思佳, 曹军, 等. 基于PSO优选特征的实木板材缺陷的压缩感知分选方法[J]. 北京林业大学学报, 2015, 37(7): 117−122.
Li C, Liu S J, Cao J, et al. The method of wood defectrecognition based on PSO feature selection and compressed sensing[J]. Journal of Beijing Forestry University, 2015, 37(7): 117−122.
|
[9] |
Chen L C, Pardeshi M S, Lo W T, et al. Edge-glued wooden panel defect detection using deep learning[J]. Wood Science and Technology, 2022, 56(2): 477−507. doi: 10.1007/s00226-021-01316-3
|
[10] |
缪伟志, 陆兆纳, 王俊龙, 等. 基于视觉的火灾检测研究[J]. 森林工程, 2022, 38(1): 86−92. doi: 10.3969/j.issn.1006-8023.2022.01.011
Miao W Z, Lu Z N, Wang J L, et al. Fire detection research based on vision[J]. Forest Engineering, 2022, 38(1): 86−92. doi: 10.3969/j.issn.1006-8023.2022.01.011
|
[11] |
高明宇, 倪海明, 张博洋, 等. 一种基于GoogLeNet卷积神经网络的木节缺陷识别方法[J]. 森林工程, 2021, 37(4): 66−70. doi: 10.3969/j.issn.1006-8023.2021.04.009
Gao M Y, Ni H M, Zhang B Y, et al. A method for recognizing wood knots defects based on GoogLeNet convolutional neural network[J]. Forest Engineering, 2021, 37(4): 66−70. doi: 10.3969/j.issn.1006-8023.2021.04.009
|
[12] |
He T, Liu Y, Yu Y, et al. Application of deep convolutional neural network on feature extraction and detection of wood defects[J]. Measurement, 2020, 152: 107357. doi: 10.1016/j.measurement.2019.107357
|
[13] |
Urbonas A, Raudonis V, Maskeliūnas R, et al. Automated identification of wood veneer surface defects using faster region-based convolutional neural network with data augmentation and transfer learning[J]. Applied Sciences, 2019, 9(22): 4898. doi: 10.3390/app9224898
|
[14] |
Shi J, Li Z, Zhu T, et al. Defect detection of industry wood veneer based on NAS and multi-channel mask R-CNN[J]. Sensors, 2020, 20(16): 4398. doi: 10.3390/s20164398
|
[15] |
Sun P A. Wood quality defect detection based on deep learning and multicriteria framework[J]. Mathematical Problems in Engineering, 2022, 2022: 9−16.
|
[16] |
Wang L, Yan W Q. Tree leaves detection based on deep learning[C]//Minh N, Wei Q Y, Harvey H. International Symposium on Geometry and Vision. Auckland: Auckland University of Technology (AUT), 2021: 26−38.
|
[17] |
赵睿, 刘辉, 刘沛霖, 等. 基于改进YOLOv5s的安全帽检测算法[J/OL]. 北京航空航天大学学报, 2023[2023−01−12]. https://doi.org/10.13700/j.bh.1001-5965.2021.0595.
Zhao R, Liu H, Liu P L, et al. Research on safety helmet detection algorithm based on improved YOLOv5s[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 2023[2023−01−12]. https://doi.org/10.13700/j.bh.1001-5965.2021.0595.
|
[18] |
李彦甫, 范习健, 杨绪兵, 等. 基于自注意力卷积网络的遥感图像分类[J]. 北京林业大学学报, 2021, 43(10): 81−88. doi: 10.12171/j.1000-1522.20210196
Li Y F, Fan X J, Yang X B, et al. Remote sensing image classification framework based on self-attention convolutional neural network[J]. Journal of Beijing Forestry University, 2021, 43(10): 81−88. doi: 10.12171/j.1000-1522.20210196
|
[19] |
邹梓吟, 盖绍彦, 达飞鹏, 等. 基于注意力机制的遮挡行人检测算法[J]. 光学学报, 2021, 41(15): 157−165.
Zou Z Y, Gai S Y, Da F P, et al. Occluded pedestrian detection algorithm basedon attention mechanism[J]. Acta Optica Sinica, 2021, 41(15): 157−165.
|
[20] |
Gao M, Wang F, Liu J, et al. Estimation of the convolutional neural network with attention mechanism and transfer learning on wood knot defect classification[J]. Journal of Applied Physics, 2022, 131(23): 233101. doi: 10.1063/5.0087060
|
[21] |
Du J. Understanding of object detection based on CNN family and YOLO[J] . Journal of Physics Conference, 2018, 1004: 012029.
|
[22] |
Gao M, Song P, Wang F, et al. A novel deep convolutional neural network based on ResNet-18 and transfer learning for detection of wood knot defects[J]. Journal of Sensors, 2021, 2021: 16−27.
|
[1] | Zhang Minghui, Yin Yunzhou, Wang Ke, Wang Shuli. Effects of spatial structure characteristics of Fraxinus mandshurica plantation on soil nutrient content[J]. Journal of Beijing Forestry University, 2023, 45(9): 73-82. DOI: 10.12171/j.1000-1522.20220476 |
[2] | Hui Gangying, Zhao Zhonghua, Hu Yanbo, Zhang Ganggang, Zhang Gongqiao, Cheng Shiping, Lu Yanlei. Research on the measurement method of forest spatial structure diversity based on 4 neighborhood tree relationship[J]. Journal of Beijing Forestry University, 2023, 45(7): 18-26. DOI: 10.12171/j.1000-1522.20220282 |
[3] | Wang Lina, Wu Junwen, Dong Qiong, Shi Zhuogong, Hu Haocheng, Wu Danzi, Li Luping. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70-82. DOI: 10.12171/j.1000-1522.20210115 |
[4] | Hu Xuefan, Zhang Huiru, Zhou Chaofan, Zhang Xiaohong. Effects of different thinning patterns on the spatial structure of Quercus mongolica secondary forests[J]. Journal of Beijing Forestry University, 2019, 41(5): 137-147. DOI: 10.13332/j.1000-1522.20190037 |
[5] | LI Jian, PENG Peng, HE Huai-jiang, TAN Ling-zhao, ZHANG Xin-na, WU Xiang-ju, LIU Zhao-gang. Effects of thinning intensity on spatial structure of multi-species temperate forest at Jiaohe in Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(9): 48-57. DOI: 10.13332/j.1000-1522.20170220 |
[6] | LI Ji-ping, FENG Yao, ZHAO Chun-yan, ZHANG Cai-cai. Quantitative analysis of stand spatial structure of Cunninghamia lanceolata non-commercial forest based on Voronoi diagram.[J]. Journal of Beijing Forestry University, 2014, 36(4): 1-7. DOI: 10.13332/j.cnki.jbfu.2014.04.005 |
[7] | WANG Ping, JIA Li-ming, WEI Song-po, WANG Qi-feng. Analysis of stand spatial structure of Platycladus orientalis recreational forest based on Voronoi diagram method[J]. Journal of Beijing Forestry University, 2013, 35(2): 39-44. |
[8] | DONG Ling-bo, LIU Zhao-gang, MA Yan, NI Bao-long, LI Yuan. A new composite index of stand spatial structure for natural forest.[J]. Journal of Beijing Forestry University, 2013, 35(1): 16-22. |
[9] | DUAN Chang-sheng, WANG Jun-hui, MA Jian-wei, YUAN Shi-yun, DU Yan-chang. Evaluation of Quercus aliena var. acuteserrata forest at the western segment of Qinling Mountain,northwestern China[J]. Journal of Beijing Forestry University, 2009, 31(5): 61-66. |
[10] | LIU Yan, YU Xin-xiao, YUE Yong-jie, GAN Jing, WANG Xiao-ping, LI Jin-hai. Spatial structure of Robinia pseudoacacia plantation in Miyun Reservoir Watershed of Beijing.[J]. Journal of Beijing Forestry University, 2009, 31(5): 25-28. |