• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Hui Gangying, Zhao Zhonghua, Hu Yanbo, Zhang Ganggang, Zhang Gongqiao, Cheng Shiping, Lu Yanlei. Research on the measurement method of forest spatial structure diversity based on 4 neighborhood tree relationship[J]. Journal of Beijing Forestry University, 2023, 45(7): 18-26. DOI: 10.12171/j.1000-1522.20220282
Citation: Hui Gangying, Zhao Zhonghua, Hu Yanbo, Zhang Ganggang, Zhang Gongqiao, Cheng Shiping, Lu Yanlei. Research on the measurement method of forest spatial structure diversity based on 4 neighborhood tree relationship[J]. Journal of Beijing Forestry University, 2023, 45(7): 18-26. DOI: 10.12171/j.1000-1522.20220282

Research on the measurement method of forest spatial structure diversity based on 4 neighborhood tree relationship

More Information
  • Received Date: July 12, 2022
  • Revised Date: October 23, 2022
  • Accepted Date: November 30, 2022
  • Available Online: December 02, 2022
  • Published Date: July 24, 2023
  •   Objective  The ecological significance of 4-variate distribution of stand spatial structure parameters was deeply analyzed and a comprehensive evaluation index of stand spatial structure diversity based on the relationship between adjacent trees was constructed to provide a theoretical basis for formulating targeted forest structure adjustment strategies.
      Method  Based on the concept of biodiversity, taking the structural unit which was composed by reference tree and its nearest four adjacent trees as the object, organically integrating the 4-variate distribution of structural parameters of uniform angle index, mingling, neighborhood comparison and crowding, as well as the number of structural unit trees and forest layers, the genetic absolute distance formula and natural logarithm were used to express the evenness and richness of structural unit types, respectively, and the stand spatial structure diversity index was constructed. The validity of index was verified by long-term positioning monitoring sample plot data.
      Result  Using the stand spatial structure diversity index (DFS) proposed in this study to measure the spatial structure diversity of forest types in different climatic zones or different origins, it was showed that the DFS values of Quercus aliena var. acutiserrata natural forest (0.854) and broadleaved Pinus koraiensis forest (0.852) were almost the same, indicating that the two forest stands had similar spatial structural diversity. The 4-variate distribution types of Platycladus orientalis plantation were higher than other natural forest, however, its spatial structural diversity (DFS = 0.382) was the lowest in the three stand types, mainly due to its lower diversity in both vertical (DFSv = 0.369) and horizontal (DFSh = 0.562) structure than the two natural forest stands. The average number of tree species in the structural units was higher in natural forest than in plantation, with 4.23 in Quercus aliena var. acutiserrata forest, 4.09 in Pinus koraiensis forest, and 1.98 in Platycladus orientalis plantation. The number of tree species in a structural unit fully demonstrated species richness of the structural unit.
      Conclusion  The integration of the three numbers including 4-variate distribution of stand spatial structure parameters, the number of tree species and number of forest layers in structure unit lay the foundation for constructing a valid spatial structure diversity index for forest stands. The stand spatial structural diversity index (DFS), based on the concept of biodiversity, is not only a feasible quantitative expression of the 4-variate distribution of structural parameters, but also is an appropriate interpretation of the ecological significance of the 4-variate distribution of structural parameters, and a comprehensive scientific evaluation of the spatial structural diversity of the stand. The index is able to measure the difference of stand spatial structure diversity of different stand types.
  • [1]
    Ampoorter E, Barbaro L, Jactel H, et al. Tree diversity is key for promoting the diversity and abundance of forest-associated taxa in Europe[J]. Oikos, 2020, 129(2): 133−146. doi: 10.1111/oik.06290
    [2]
    Forrester D I, Bauhus J. A review of processes behind diversity-productivity relationships in forests[J]. Current Forestry Reports, 2016, 2(1): 45−61. doi: 10.1007/s40725-016-0031-2
    [3]
    Aussenac R, Bergeron Y, Gravel D, et al. Interactions among trees: a key element in the stabilising effect of species diversity on forest growth[J]. Functional Ecology, 2019, 33(2): 360−367. doi: 10.1111/1365-2435.13257
    [4]
    惠刚盈, 赵中华, 张弓乔, 等. 结构化森林经营理论与实践[M]. 北京: 科学出版社, 2020.

    Hui G Y, Zhao Z H, Zhang G Q, et al. Theory and practice of structure-based forest management[M]. Beijing: Science Press, 2020.
    [5]
    Spies T A. Forest structure: a key to the ecosystem[J]. Northwest Science, 1998, 72: 34−39.
    [6]
    Franklin J F, Spies T A, Pelt V R, et al. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example[J]. Forest Ecology and Management, 2002, 155(1−3): 399−423. doi: 10.1016/S0378-1127(01)00575-8
    [7]
    Pommerening A. Evaluating structural indices by reversing forest structural analysis[J]. Forest Ecology and Management, 2006, 224(3): 266−277.
    [8]
    惠刚盈, 克劳斯·冯佳多, 胡艳波, 等. 结构化森林经营[M]. 北京: 中国林业出版社, 2007.

    Hui G Y,von Gadow K, Hu Y B, et al. Structure-based forest management[M]. Beijing: China Forestry Publishing House, 2007.
    [9]
    von Gadow K, Zhang C Y, Wehenkel C, et al. Forest structure and disversity[M]// von Gadow K, Jurgen N, Joachim S. Continuous cover forestry. Berlin: Springer, 2012: 29−83.
    [10]
    Ali A. Forest stand structure and functioning: current knowledge and future challenges[J]. Ecological Informatics, 2019, 98: 665−677.
    [11]
    Fichtner A, HäRdtle W, Bruelheide H, et al. Neighbourhood interactions drive overyielding in mixed-species tree communities[J]. Nature Communications, 2018, 9(1): 1144. doi: 10.1038/s41467-018-03529-w
    [12]
    Hui G Y, Wang Y, Zhang G Q, et al. A novel approach for assessing the neighborhood competition in two different aged forests[J]. Forest Ecology and Management, 2018, 422: 49−58. doi: 10.1016/j.foreco.2018.03.045
    [13]
    Pommerening A, Grabarnik P. Individual-based methods in forest ecology and management[M]. Berlin: Springer International Publishing, 2019.
    [14]
    Zhang G, Hui G, Hu Y, et al. Designing near-natural planting patterns for plantation forests in China[J]. Forest Ecosystems, 2019, 6(3): 60−72.
    [15]
    惠刚盈. 基于相邻木关系的林分空间结构参数应用研究[J]. 北京林业大学学报, 2013, 35(4): 1−9. doi: 10.13332/j.1000-1522.2013.04.015

    Hui G Y. Studies on the application of stand spatial structure parameters based on the relationship of neighborhood trees[J]. Journal of Beijing Forestry University, 2013, 35(4): 1−9. doi: 10.13332/j.1000-1522.2013.04.015
    [16]
    Li Y F, Hui G Y, Zhao Z H, et al. The bivariate distribution characteristics of spatial structure in natural Korean pine broadleaved forest[J]. Journal of Vegetation Science, 2012, 23(6): 1180−1190.
    [17]
    白超. 空间结构参数及其在锐齿栎天然林结构动态分析中的应用[D]. 北京: 中国林业科学研究院, 2016.

    Bai C. Spatial structure parameters and the application on studying structure dynamics of natural Quercus aliena var. acuteserrata forest[D]. Beijing: Chinese Academy of Forestry, 2016.
    [18]
    张岗岗. 天然林结构解译及林分状态综合评价[D]. 北京: 中国林业科学研究院, 2020.

    Zhang G G. Natural forest structure interpretation and forest state comprehensive evaluation[D]. Beijing: Chinese Academy of Forestry, 2020.
    [19]
    安慧君. 阔叶红松林空间结构研究[D]. 北京: 北京林业大学, 2003.

    An H J. Study on the spatial structure of the broadleaved Korean pine forest[D]. Beijing: Beijing Forestry University, 2003.
    [20]
    惠刚盈, 赵中华, 袁士云. 森林经营模式评价方法: 以甘肃小陇山林区为例[J]. 林业科学, 2011, 47(11): 114−120. doi: 10.11707/j.1001-7488.20111118

    Hui G Y, Zhao Z H, Yuan S Y. Evaluation method of forest management models: a case study of Xiaolongshan Forest Area in Gansu Province[J]. Scientia Silvae Sinicae, 2011, 47(11): 114−120. doi: 10.11707/j.1001-7488.20111118
    [21]
    袁士云. 甘肃省小陇山现有林分经营模式评价研究[D]. 北京: 中国林业科学研究院, 2010.

    Yuan S Y. Evaluation of existing forest management models in Xiaolongshan, Gansu Province[M]. Beijing: Chinese Academy of Forestry, 2010.
    [22]
    Kovács B, Tinya F, Ódor P. Stand structural drivers of microclimate in mature temperate mixed forests[J]. Agricultural and Forest Meteorology, 2017, 234−235: 11−21. doi: 10.1016/j.agrformet.2016.11.268
    [23]
    Neumann M, Starlinger F. The significance of different indices for stand structure and diversity in forests[J]. Forest Ecology and Management, 2001, 145(1): 91−106.
    [24]
    胡艳波. 基于结构化森林经营的天然异龄林空间优化经营模型研究[D]. 北京: 中国林业科学研究院, 2010.

    Hu Y B. Structure-based spatial optimization management model for natural uneven-aged forest[D]. Beijing: Chinese Academy of Forestry, 2010.
    [25]
    汤孟平, 娄明华, 陈永刚, 等. 不同混交度指数的比较分析[J]. 林业科学, 2012, 48(8): 46−53. doi: 10.11707/j.1001-7488.20120808

    Tang M P, Lou M H, Chen Y G, et al. Comparative analyses on different mingling indices[J]. Scientia Silvae Sinicae, 2012, 48(8): 46−53. doi: 10.11707/j.1001-7488.20120808
    [26]
    Hui G Y, Zhao X H, Zhao Z H, et al. Evaluating tree species spatial diversity based on neighborhood relationships[J]. Forest Science, 2011, 57(4): 292−300.
    [27]
    王宏翔, 胡艳波, 赵中华. 树种空间多样性指数(TSS)的简洁预估方法[J]. 西北林学院学报, 2013, 28(4): 184−187. doi: 10.3969/j.issn.1001-7461.2013.04.38

    Wang H X, Hu Y B, Zhao Z H. A simple method for the estimation of tree species spatial diversity index (TSS)[J]. Journal of Northwest Forestry University, 2013, 28(4): 184−187. doi: 10.3969/j.issn.1001-7461.2013.04.38
    [28]
    Zhao Z H, Hui G Y, Liu W Z, et al. A novel method for calculating stand structural diversity based on the relationship of adjacent trees[J]. Forests, 2022, 13: 343. doi: 10.3390/f13020343
    [29]
    惠刚盈, 赵中华, 胡艳波. 结构化森林经营技术指南[M]. 北京: 中国林业出版社, 2010.

    Hui G Y, Zhao Z H, Hu Y B. A guide to structure-based forest management[M]. Beijing: China Forestry Publishing House, 2010.
    [30]
    张岗岗, 刘瑞红, 惠刚盈, 等. 林分空间结构参数N元分布及其诠释: 以小陇山锐齿栎天然混交林为例[J]. 北京林业大学学报, 2019, 41(4): 21−31.

    Zhang G G, Liu R H, Hui G Y, et al. N-variate distribution and its annotation on forest spatial structural parameters: a case study of Quercus aliena var. acuteserrata natural mixed forest in Xiaolong Mountains, Gansu Province of northwestern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 21−31.
    [31]
    惠刚盈, 李丽, 赵中华, 等. 林木空间分布格局分析方法[J]. 生态学报, 2007, 27(11): 4717−4728. doi: 10.3321/j.issn:1000-0933.2007.11.040

    Hui G Y, Li L, Zhao Z H, et al. The comparison of methods in analysis of the tree spatial distribution pattern[J]. Acta Ecologica Sinica, 2007, 27(11): 4717−4728. doi: 10.3321/j.issn:1000-0933.2007.11.040
    [32]
    李远发, 赵中华, 胡艳波, 等. 天然林经营效果评价方法及其应用[J]. 林业科学研究, 2012, 25(2): 123−129. doi: 10.3969/j.issn.1001-1498.2012.02.003

    Li Y F, Zhao Z H, Hu Y B, et al. Evaluating natural forest management efficiency[J]. Forest Research, 2012, 25(2): 123−129. doi: 10.3969/j.issn.1001-1498.2012.02.003
    [33]
    张连金, 胡艳波, 赵中华, 等. 北京九龙山侧柏人工林空间结构多样性[J]. 生态学杂志, 2015, 34(1): 60−69. doi: 10.13292/j.1000-4890.2015.0010

    Zhang L J, Hu Y B, Zhao Z H, et al. Spatial structure diversity of Platycladus orientalis plantation in Beijing Jiulong Mountain[J]. Chinese Journal of Ecology, 2015, 34(1): 60−69. doi: 10.13292/j.1000-4890.2015.0010
    [34]
    惠刚盈, 克劳斯·冯佳多. 结构化森林经营原理[M]. 北京: 中国林业出版社, 2016.

    Hui G Y, Klaus K V, et al. Principles of structure-based forest management[M]. Beijing: China Forestry Publishing House, 2016.
    [35]
    Fisher R A, Corbet A S, Williams C B. The relation between the number of species and the number of individuals in a random sample of an animal population[J]. The Journal of Animal Ecology, 1943, 12(1): 42. doi: 10.2307/1411
    [36]
    Zhang G Q, Hui G Y, Zhao Z H, et al. Composition of basal area in natural forests based on the uniform angle index[J]. Ecological Informatics, 2018, 45: 1−8. doi: 10.1016/j.ecoinf.2018.01.002
  • Related Articles

    [1]Zou Xuge, Wang Yin, Wang Jianming, Qu Mengjun, Zhu Weilin, Zhao Hang, Si Jianhua, Li Jingwen. Coordination and trade-off of leaf functional traits in Populus euphratica and their response to tree age and soil factors[J]. Journal of Beijing Forestry University, 2024, 46(5): 82-92. DOI: 10.12171/j.1000-1522.20220522
    [2]Huang Qingyang, Xie Lihong, Cao Hongjie, Yang Fan, Ni Hongwei. Variation characteristics of leaf functional traits of Populus davidiana in Wudalianchi Volcano, northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(2): 81-89. DOI: 10.12171/j.1000-1522.20200089
    [3]Li Jinhang, Zhu Jiyou, Catherine Mhae B. Jandug, Zhao Kai, Xu Chengyang. Relationship between leaf functional trait variation of Cotinus coggygria seedling and location geographical-climatic factors under drought stress[J]. Journal of Beijing Forestry University, 2020, 42(2): 68-78. DOI: 10.12171/j.1000-1522.20190079
    [4]Zhong Yueming, Wang Wenjuan, Wang Jianming, Wang Yuchen, Li Jingwen, Yuan Dong, Fan Yunyun, Wei Xincheng. Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors[J]. Journal of Beijing Forestry University, 2019, 41(10): 20-29. DOI: 10.13332/j.1000-1522.20190128
    [5]Wu Dongshan, Yang Zhangqi, Huang Yongli. Analysis and evaluation of resin productivity and resin component among different half sibling families of Pinus massoniana[J]. Journal of Beijing Forestry University, 2019, 41(2): 53-61. DOI: 10.13332/j.1000-1522.20170377
    [6]CHEN Wu, KONG De-cang, CUI Yan-hong, CAO Ming, PANG Xiao-ming, LI Ying-yue. Phenotypic genetic diversity of a core collection of Ziziphus jujuba and correlation analysis of dehiscent characters[J]. Journal of Beijing Forestry University, 2017, 39(6): 78-84. DOI: 10.13332/j.1000-1522.20170024
    [7]ZHAO Wen-xia, ZOU Bin, ZHENG Jing-ming, LUO Jiu-fu. Correlations between leaf, stem and root functional traits of common tree species in an evergreen broad-leaved forest[J]. Journal of Beijing Forestry University, 2016, 38(6): 35-41. DOI: 10.13332/j.1000-1522.20160087
    [8]LIU Xi-zhen, FENG Huan-ying, CAI Cun-ju, FAN Shao-hui, LIU Guang-lu. Response of leaf functional traits of Moso bamboo during the invading process into the broad-leaved forest[J]. Journal of Beijing Forestry University, 2015, 37(8): 8-10. DOI: 10.13332/j.1000-1522.20150157
    [9]WAN Hong-mei, LI Xia, DONG Dao-rui, ZHAO Zhao, TANG Jin. Correlation analysis and characteristics of measuring factors for Populus euphratica after drought stress water delivery.[J]. Journal of Beijing Forestry University, 2012, 34(2): 34-38.
    [10]MO Chang-ming, MA Xiao-jun, , QI Li-wang, BAI Long-hua, SHI Lei, FENG Shi-xin. Genetic variation, correlation and path analysis of Siraitia grosvenorii germplasm characters.[J]. Journal of Beijing Forestry University, 2008, 30(4): 121-125.
  • Cited by

    Periodical cited type(3)

    1. 杨钺戈,李跃,张慧,阮明菊,马丽宣,曾千春. 农杆菌介导法获得辣木PKM-1转双价抗虫基因(sck+Cry1-Ac)愈伤组织. 云南农业大学学报(自然科学). 2023(01): 27-33 .
    2. 王玉娟,罗成凤,幸伟年,李进,占志勇,何小三. 中国枫香×北美枫香杂交子代生长表现及初步评价. 南方林业科学. 2022(06): 15-18 .
    3. 韩海萍. 枫香多目标育种及栽培技术. 乡村科技. 2021(29): 87-89 .

    Other cited types(3)

Catalog

    Article views (803) PDF downloads (195) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return