• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Yuanyuan, Ren Ruiqing, Chen Yao, Gao Jianmin. Preparation of SiO2 microspheres and their structural coloration on wood surface[J]. Journal of Beijing Forestry University, 2023, 45(3): 137-144. DOI: 10.12171/j.1000-1522.20220432
Citation: Li Yuanyuan, Ren Ruiqing, Chen Yao, Gao Jianmin. Preparation of SiO2 microspheres and their structural coloration on wood surface[J]. Journal of Beijing Forestry University, 2023, 45(3): 137-144. DOI: 10.12171/j.1000-1522.20220432

Preparation of SiO2 microspheres and their structural coloration on wood surface

More Information
  • Received Date: October 30, 2022
  • Revised Date: February 13, 2023
  • Accepted Date: February 26, 2023
  • Available Online: February 28, 2023
  • Published Date: March 24, 2023
  •   Objective  In order to enrich the color system of wood products, this paper discusses the construction and color performance of SiO2 photonic crystals on the surface of wood.
      Method  In this paper, SiO2 microspheres with different particle diameters were prepared by the Stöber method, and the SiO2 photonic crystal structure color was constructed on the wood substrate by the gravity deposition self-assembly method. The chemical composition and structure of SiO2 microspheres were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. The morphology of the microspheres and their arrangement on the wood substrate were characterized by scanning electron microscopy, and the particle diameter distribution of the microspheres under different treatment processes was analyzed. The color parameters and UV-visible reflectance of SiO2 structure on the wood surface were analyzed by digital camera and UV-visible absorption spectrometer.
      Result  X-ray diffraction, Fourier transform infrared spectroscopy confirmed that the reaction products prepared in this paper were pure amorphous SiO2, suitable for constructing well-colored structural color coating. The preparation formula only controlled the amount of ethanol added, and the addition amount was 80, 85, 90, 95, 100, and 105 mL, respectively. The monodisperse nano-SiO2 was generated, and their particle diameters were 294, 246, 226, 214, 194, and 181 nm, respectively. As the particle diameter of SiO2 involved in self-assembly decreased in turn, the color of the film gradually changed from red to green, blue-green, and finally to deep purple, purple, and lavender. The ultraviolet reflection wavelength gradually decreased and the color blue shifted. The SiO2 microspheres showed a three-dimensional ordered face-centered cubic structure on the surface of the wood substrate. Due to environmental disturbances, assembly defects such as cracks and missing will occur, but will not affect the overall color.
      Conclusion   Only by controlling the amount of ethanol added, six different particle diameters of nano-SiO2 particles suitable for constructing photonic crystal structure color can be prepared. Silica microspheres of various particle diameters formed bright structural colors after self-assembly on the wood substrate, and the color of the structural color coating would blue shift due to the particle diameter reduction of the self-assembled microspheres. The above research content provides a simple and novel method for the large-scale preparation of wood surface structural color coatings, which can enrich the color system of wood products.
  • [1]
    张悦, 李超, 郭叶莹子, 等. 木材的视觉刺激及人体心理生理响应研究进展[J]. 北京林业大学学报, 2022, 44(6): 156−166. doi: 10.12171/j.1000-1522.20210365

    Zhang Y, Li C, Guo-Ye Y Z, et al. Research development on human psychological and physiological responses to visual stimulation of wood[J]. Journal of Beijing Forestry University, 2022, 44(6): 156−166. doi: 10.12171/j.1000-1522.20210365
    [2]
    于海鹏, 刘一星, 刘迎涛. 国内外木质环境学的研究概述[J]. 世界林业研究, 2003, 16(6): 20−26. doi: 10.3969/j.issn.1001-4241.2003.06.005

    Yu H P, Liu Y X, Liu Y T. Wood environment science research status and development at domestic and abroad[J]. World Forestry Research, 2003, 16(6): 20−26. doi: 10.3969/j.issn.1001-4241.2003.06.005
    [3]
    刘光金, 侯佳, 徐建民. 木材材色研究进展[J]. 世界林业研究, 2021, 34(4): 46−53. doi: 10.13348/j.cnki.sjlyyj.2021.0019.y

    Liu G J, Hou J, Xu J M. A review of the research on wood color[J]. World Forestry Research, 2021, 34(4): 46−53. doi: 10.13348/j.cnki.sjlyyj.2021.0019.y
    [4]
    Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059−2062. doi: 10.1103/PhysRevLett.58.2059
    [5]
    Feng L, Wang F, Luo H J, et al. Review of recent advancements in the biomimicry of structural colors[J]. Dyes and Pigments, 2023, 210: 111019. doi: 10.1016/j.dyepig.2022.111019
    [6]
    Chen S W, Lu J Y, Tung P H, et al. Study of laser actions by bird’s feathers with photonic crystals[J]. Scientific Reports, 2021, 11(1): 1−6. doi: 10.1038/s41598-020-79139-8
    [7]
    Thomé M, Richalot E, Berthier S. Light guidance in photonic structures of Morpho butterfly wing scales[J]. Applied Physics A, 2020, 126(10): 1−11.
    [8]
    梁冬冬, 李绍军, 李阳, 等. 基于等离子体光学效应的调谐结构色器件发展及应用[J]. 物理与工程, 2022, 32(2): 155−169. doi: 10.3969/j.issn.1009-7104.2022.02.027

    Liang D D, Li S J, Li Y, et al. Development and application of tunable structural color devices based on plasmonic’s effects[J]. Physics and Engineering, 2022, 32(2): 155−169. doi: 10.3969/j.issn.1009-7104.2022.02.027
    [9]
    张子璐, 刘云燕, 谢新媛, 等. 多彩结构色–柔性光子晶体材料与应用[J]. 包装工程, 2022, 43(19): 40−48.

    Zhang Z L, Liu Y Y, Xie X Y, et al. Versatile structure color-flexible photonic crystal material and its application[J]. Packaging Engineering, 2022, 43(19): 40−48.
    [10]
    吴玉江, 刘国金, 李义臣, 等. 二氧化硅光子晶体在涤纶织物上的结构生色[J]. 纺织学报, 2015, 36(10): 62−66. doi: 10.13475/j.fzxb.20140905005

    Wu Y J, Liu G J, Li Y C, et al. Structural colors of SiO2 photonic crystals on polyester fabrics[J]. Journal of Textile Research, 2015, 36(10): 62−66. doi: 10.13475/j.fzxb.20140905005
    [11]
    Bao B, Liu D, Yang Y, et al. Self-assembly of ternary particles for tough colloidal crystals with vivid structure colors[J]. Journal of Nanomaterials, 2013(8): 1−14.
    [12]
    Núñez-Montenegro A, Crista D M A, da Silva J C G E. Structural coloration based on photonic crystals for coating applications on wood[J]. European Journal of Wood and Wood Products, 2020, 78(2): 293−300. doi: 10.1007/s00107-020-01499-9
    [13]
    彭晶晶, 陈佳颖, 高伟洪, 等. 均匀SiO2纳米颗粒的制备及其结构生色[J]. 北京服装学院学报: 自然科学版, 2021, 41(1): 7−13.

    Peng J J, Chen J Y, Gao W H, et al. Synthesis of uniform SiO2 nanoparticles and its structural coloration[J]. Journal of Beijing Institute of Fashion Technology: Natural Science Edition, 2021, 41(1): 7−13.
    [14]
    Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid & Interface Science, 1968, 26(1): 62−69.
    [15]
    Tominaga S. Color classification of natural color images[J]. Color Research & Application, 1992, 17(4): 230−239.
    [16]
    Gao W, Rigout M, Owens H. Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals[J]. Journal of Nanoparticle Research, 2016, 18(12): 387. doi: 10.1007/s11051-016-3691-8
    [17]
    Canton G, Ricco R, Marinello F, et al. Modified Stöber synthesis of highly luminescent dye-doped silica nanoparticles[J]. Journal of Nanoparticle Research, 2011, 13(9): 4349−4356. doi: 10.1007/s11051-011-0382-3
    [18]
    Isapour G, Lattuada M. Bioinspired stimuli-responsive color-changing systems[J]. Advanced Materials, 2018, 30(19): 1707069. doi: 10.1002/adma.201707069
    [19]
    Miguez H, Meseguer F, Lopez C, et al. Evidence of FCC crystallization of SiO2 nanospheres[J]. Langmuir, 1997, 13(23): 6009−6011. doi: 10.1021/la970589o
  • Related Articles

    [1]Sun Ruilin, Wang Cheng, Han Wenjing, Bian Qi, Zhang Shujing. Estimates of optimal times for human exposure to sunlight UV radiation in tree shade[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240108
    [2]Sun Yingchun, Liu Ru, Long Ling, Chen Minggui. Low gloss and anti-fingerprint properties of self-wrinkling UV cured polyurethane acrylate wood coatings[J]. Journal of Beijing Forestry University, 2024, 46(4): 149-157. DOI: 10.12171/j.1000-1522.20230351
    [3]Li Wanzhao, Zhang Zheng, Peng Junyi, Wang Xinzhou, Shi Jiangtao, Mei Changtong. Exploring the internal deformation of wood under loading based on X-ray CT[J]. Journal of Beijing Forestry University, 2021, 43(2): 160-164. DOI: 10.12171/j.1000-1522.20200290
    [4]Li Jinyu, Gao Yuan, Zhang Qin, Liu Xiaomin, Gao Hongbo. Genetic identification and analysis of chloroplast division mutants x17-3 and pd50 in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2018, 40(4): 86-95. DOI: 10.13332/j.1000-1522.20170433
    [5]Zhang Yu-hong, Cheng Kai-shan, Gao Xin, Zhang Xi-guo, Liu Tong. Influence on antioxidants and alkaloid content of Phellodendron amurense seedlings grown under supplementary UV-B radiation[J]. Journal of Beijing Forestry University, 2018, 40(1): 27-36. DOI: 10.13332/j.1000-1522.20170201
    [6]KOU Xin-yue, WANG Yu-jie, ZHANG Xiao-ming, WANG Yun-qi, ZHAO Yang, CHENG Chen. Runoff-sediment relationship and driving force of typical watershed in the third sub-region of hilly loess area, northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(7): 85-93. DOI: 10.13332/j.1000-1522.20140375
    [7]DING Xiao-liu, LIU Jia, ZHAO Hong-xia, WANG Jing, LUO Le, PAN Hui-tang, ZHANG Qi-xiang. Hybrid identification and morphological evaluation of modern roses ( Rosa hybrida ) x Rosa rugosa[J]. Journal of Beijing Forestry University, 2014, 36(5): 123-130. DOI: 10.13332/j.cnki.jbfu.2014.05.005
    [8]GUO Jun-e, LI Tian, SUN Xian-zhi, SUN Xia, ZHENG Cheng-shu. Spermidine participation in the regulation of floral bud differentiation in chrysanthemum (Chrysanthemum x morifolium)[J]. Journal of Beijing Forestry University, 2014, 36(4): 88-93. DOI: 10.13332/j.cnki.jbfu.2014.04.017
    [9]TANG Hui, KONG De-xin, LIANG Hui-ling, WANG Man-lian, SHI Yan-cai, WEI Ji-qing.. Rapid assessment of infrared spectroscopy and chemometrics of Illicium difengpi from different regions by fourier transform[J]. Journal of Beijing Forestry University, 2012, 34(3): 137-141.
    [10]LI Li, XI Bao-tian, YANG Yong-fu. Measurement of residual stress in tensioned circular saws using X-rays[J]. Journal of Beijing Forestry University, 2005, 27(3): 87-90.
  • Cited by

    Periodical cited type(13)

    1. 郭来珍,陈虹,赵善超,陈凤,陈兵权,陈鑫悦. 天山花楸不同种源种子表型变异分析. 种子. 2022(10): 50-57+2 .
    2. 孙永玉,李昆,雷晨雨,田瑞杰,张春华,冯德枫,刘方炎,唐国勇. 干热河谷小桐子不同种源的光合生理及生长性状. 应用与环境生物学报. 2021(02): 351-356 .
    3. 刘莉,王磊,吴丹,赵永军,庄振杰,王震,鲁仪增,刘立江,陆璐,解孝满. 不同种源文冠果种子的表型变异. 经济林研究. 2021(04): 97-105 .
    4. 郭国业,徐莺,唐琳,陈放,韩学琴. 不同地理种源麻疯树表型变异研究. 四川农业大学学报. 2020(02): 143-151+160 .
    5. 句娇,毕泉鑫,赵阳,于丹,崔艺凡,傅光辉,范思琪,陈梦园,于海燕,王利兵. 不同种源文冠果种子及苗期性状地理变异. 江西农业大学学报. 2019(03): 529-540 .
    6. 张毅,敖妍,刘觉非,赵磊磊,张永明. 文冠果种实性状变异规律及优良单株选择. 东北林业大学学报. 2019(09): 1-5 .
    7. 张毅,敖妍,刘觉非,赵磊磊,由海德. 不同分布区文冠果种实性状对生态因子的响应. 西北林学院学报. 2019(05): 85-90 .
    8. 赵海鹄,梁文汇,李宝财,梁忠云. 广西细子龙核仁油化学成分分析. 广西林业科学. 2019(04): 531-534 .
    9. 惠文凯,王益,陈晓阳. 麻疯树种子含油量近红外光谱定标模型的建立. 北京林业大学学报. 2018(01): 1-7 . 本站查看
    10. 何霞,邓成,杨嘉麒,张登,张梦洁,廖柏勇,王芳,陈晓阳. 苦楝种源间生长性状的早期地理变异分析. 北京林业大学学报. 2018(07): 45-54 . 本站查看
    11. 覃敏,尹光天,杨锦昌,李荣生,邹文涛. 米老排不同种源的表型性状变异分析. 浙江农林大学学报. 2017(01): 112-119 .
    12. 许洋,李迎超,冯慧,王迪,丁可君,郭超,刘国军,厉月桥,宁超,贺磊,郭芳. 不同种源栓皮栎种子表型性状的变异分析. 安徽农业科学. 2015(25): 164-167 .
    13. 许洋,李迎超,冯慧,王迪,丁可君,郭超,刘国军,厉月桥,宁超,贺磊,郭芳. 不同种源麻栎种子表型性状的变异分析. 林业科技通讯. 2015(09): 8-12 .

    Other cited types(5)

Catalog

    Article views (740) PDF downloads (92) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return