• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Yuanyuan, Ren Ruiqing, Chen Yao, Gao Jianmin. Preparation of SiO2 microspheres and their structural coloration on wood surface[J]. Journal of Beijing Forestry University, 2023, 45(3): 137-144. DOI: 10.12171/j.1000-1522.20220432
Citation: Li Yuanyuan, Ren Ruiqing, Chen Yao, Gao Jianmin. Preparation of SiO2 microspheres and their structural coloration on wood surface[J]. Journal of Beijing Forestry University, 2023, 45(3): 137-144. DOI: 10.12171/j.1000-1522.20220432

Preparation of SiO2 microspheres and their structural coloration on wood surface

More Information
  • Received Date: October 30, 2022
  • Revised Date: February 13, 2023
  • Accepted Date: February 26, 2023
  • Available Online: February 28, 2023
  • Published Date: March 24, 2023
  •   Objective  In order to enrich the color system of wood products, this paper discusses the construction and color performance of SiO2 photonic crystals on the surface of wood.
      Method  In this paper, SiO2 microspheres with different particle diameters were prepared by the Stöber method, and the SiO2 photonic crystal structure color was constructed on the wood substrate by the gravity deposition self-assembly method. The chemical composition and structure of SiO2 microspheres were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. The morphology of the microspheres and their arrangement on the wood substrate were characterized by scanning electron microscopy, and the particle diameter distribution of the microspheres under different treatment processes was analyzed. The color parameters and UV-visible reflectance of SiO2 structure on the wood surface were analyzed by digital camera and UV-visible absorption spectrometer.
      Result  X-ray diffraction, Fourier transform infrared spectroscopy confirmed that the reaction products prepared in this paper were pure amorphous SiO2, suitable for constructing well-colored structural color coating. The preparation formula only controlled the amount of ethanol added, and the addition amount was 80, 85, 90, 95, 100, and 105 mL, respectively. The monodisperse nano-SiO2 was generated, and their particle diameters were 294, 246, 226, 214, 194, and 181 nm, respectively. As the particle diameter of SiO2 involved in self-assembly decreased in turn, the color of the film gradually changed from red to green, blue-green, and finally to deep purple, purple, and lavender. The ultraviolet reflection wavelength gradually decreased and the color blue shifted. The SiO2 microspheres showed a three-dimensional ordered face-centered cubic structure on the surface of the wood substrate. Due to environmental disturbances, assembly defects such as cracks and missing will occur, but will not affect the overall color.
      Conclusion   Only by controlling the amount of ethanol added, six different particle diameters of nano-SiO2 particles suitable for constructing photonic crystal structure color can be prepared. Silica microspheres of various particle diameters formed bright structural colors after self-assembly on the wood substrate, and the color of the structural color coating would blue shift due to the particle diameter reduction of the self-assembled microspheres. The above research content provides a simple and novel method for the large-scale preparation of wood surface structural color coatings, which can enrich the color system of wood products.
  • [1]
    张悦, 李超, 郭叶莹子, 等. 木材的视觉刺激及人体心理生理响应研究进展[J]. 北京林业大学学报, 2022, 44(6): 156−166. doi: 10.12171/j.1000-1522.20210365

    Zhang Y, Li C, Guo-Ye Y Z, et al. Research development on human psychological and physiological responses to visual stimulation of wood[J]. Journal of Beijing Forestry University, 2022, 44(6): 156−166. doi: 10.12171/j.1000-1522.20210365
    [2]
    于海鹏, 刘一星, 刘迎涛. 国内外木质环境学的研究概述[J]. 世界林业研究, 2003, 16(6): 20−26. doi: 10.3969/j.issn.1001-4241.2003.06.005

    Yu H P, Liu Y X, Liu Y T. Wood environment science research status and development at domestic and abroad[J]. World Forestry Research, 2003, 16(6): 20−26. doi: 10.3969/j.issn.1001-4241.2003.06.005
    [3]
    刘光金, 侯佳, 徐建民. 木材材色研究进展[J]. 世界林业研究, 2021, 34(4): 46−53. doi: 10.13348/j.cnki.sjlyyj.2021.0019.y

    Liu G J, Hou J, Xu J M. A review of the research on wood color[J]. World Forestry Research, 2021, 34(4): 46−53. doi: 10.13348/j.cnki.sjlyyj.2021.0019.y
    [4]
    Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059−2062. doi: 10.1103/PhysRevLett.58.2059
    [5]
    Feng L, Wang F, Luo H J, et al. Review of recent advancements in the biomimicry of structural colors[J]. Dyes and Pigments, 2023, 210: 111019. doi: 10.1016/j.dyepig.2022.111019
    [6]
    Chen S W, Lu J Y, Tung P H, et al. Study of laser actions by bird’s feathers with photonic crystals[J]. Scientific Reports, 2021, 11(1): 1−6. doi: 10.1038/s41598-020-79139-8
    [7]
    Thomé M, Richalot E, Berthier S. Light guidance in photonic structures of Morpho butterfly wing scales[J]. Applied Physics A, 2020, 126(10): 1−11.
    [8]
    梁冬冬, 李绍军, 李阳, 等. 基于等离子体光学效应的调谐结构色器件发展及应用[J]. 物理与工程, 2022, 32(2): 155−169. doi: 10.3969/j.issn.1009-7104.2022.02.027

    Liang D D, Li S J, Li Y, et al. Development and application of tunable structural color devices based on plasmonic’s effects[J]. Physics and Engineering, 2022, 32(2): 155−169. doi: 10.3969/j.issn.1009-7104.2022.02.027
    [9]
    张子璐, 刘云燕, 谢新媛, 等. 多彩结构色–柔性光子晶体材料与应用[J]. 包装工程, 2022, 43(19): 40−48.

    Zhang Z L, Liu Y Y, Xie X Y, et al. Versatile structure color-flexible photonic crystal material and its application[J]. Packaging Engineering, 2022, 43(19): 40−48.
    [10]
    吴玉江, 刘国金, 李义臣, 等. 二氧化硅光子晶体在涤纶织物上的结构生色[J]. 纺织学报, 2015, 36(10): 62−66. doi: 10.13475/j.fzxb.20140905005

    Wu Y J, Liu G J, Li Y C, et al. Structural colors of SiO2 photonic crystals on polyester fabrics[J]. Journal of Textile Research, 2015, 36(10): 62−66. doi: 10.13475/j.fzxb.20140905005
    [11]
    Bao B, Liu D, Yang Y, et al. Self-assembly of ternary particles for tough colloidal crystals with vivid structure colors[J]. Journal of Nanomaterials, 2013(8): 1−14.
    [12]
    Núñez-Montenegro A, Crista D M A, da Silva J C G E. Structural coloration based on photonic crystals for coating applications on wood[J]. European Journal of Wood and Wood Products, 2020, 78(2): 293−300. doi: 10.1007/s00107-020-01499-9
    [13]
    彭晶晶, 陈佳颖, 高伟洪, 等. 均匀SiO2纳米颗粒的制备及其结构生色[J]. 北京服装学院学报: 自然科学版, 2021, 41(1): 7−13.

    Peng J J, Chen J Y, Gao W H, et al. Synthesis of uniform SiO2 nanoparticles and its structural coloration[J]. Journal of Beijing Institute of Fashion Technology: Natural Science Edition, 2021, 41(1): 7−13.
    [14]
    Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid & Interface Science, 1968, 26(1): 62−69.
    [15]
    Tominaga S. Color classification of natural color images[J]. Color Research & Application, 1992, 17(4): 230−239.
    [16]
    Gao W, Rigout M, Owens H. Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals[J]. Journal of Nanoparticle Research, 2016, 18(12): 387. doi: 10.1007/s11051-016-3691-8
    [17]
    Canton G, Ricco R, Marinello F, et al. Modified Stöber synthesis of highly luminescent dye-doped silica nanoparticles[J]. Journal of Nanoparticle Research, 2011, 13(9): 4349−4356. doi: 10.1007/s11051-011-0382-3
    [18]
    Isapour G, Lattuada M. Bioinspired stimuli-responsive color-changing systems[J]. Advanced Materials, 2018, 30(19): 1707069. doi: 10.1002/adma.201707069
    [19]
    Miguez H, Meseguer F, Lopez C, et al. Evidence of FCC crystallization of SiO2 nanospheres[J]. Langmuir, 1997, 13(23): 6009−6011. doi: 10.1021/la970589o
  • Related Articles

    [1]FAN Zi-luan, ZHANG Yan-dong, ZHANG Hua, WANG Zhen-yu, BAO Yi-hong. Antioxidant and antibacterial activity of essential oil from Pinus koraiensis needles[J]. Journal of Beijing Forestry University, 2017, 39(8): 98-103. DOI: 10.13332/j.1000-1522.20160265
    [2]WENG Yue-tai, XUE Yu, XU Shuo, ZHANG Guo-liang, LIU Yue, DI Xue-ying. Extraction of total flavonoids from Cronartium orientale aeciospores by response surface methodology and its antioxidant activity in vitro[J]. Journal of Beijing Forestry University, 2017, 39(3): 38-47. DOI: 10.13332/j.1000-1522.20160269
    [3]ZHAO Qing, Lu Xiao-fei, ZHU Xiao-ran, ZHANG Na, GUO Qing-qi. Optimization of extraction technology for lilac polyphenols and their antioxidant activity.[J]. Journal of Beijing Forestry University, 2015, 37(10): 125-129. DOI: 10.13332/j.1000-1522.20140174
    [4]GUO Qing-qi, ZHANG Na, LIU Yi-bing, WANG Zhen-yu. Microwave and ultrasonic effects on the extraction and antioxidation of larch bark polyphenols.[J]. Journal of Beijing Forestry University, 2015, 37(1): 134-138. DOI: 10.13332/j.cnki.jbfu.2015.01.018
    [5]GUO Qing-qi, ZHANG Na, LI Meng-yun, ZHANG Zhi, WANG Zhen-yu. Relationship between polyphenols and antioxidation in larch pine cones and growing slope aspect.[J]. Journal of Beijing Forestry University, 2014, 36(1): 62-65.
    [6]ZHOU Xing-zi, WANG Zi-na, ZENG Hong-sheng, XIA Er-dong, CHEN Lin, REN Di-feng, LU Jun. Preparation process and antioxidant activity of walnut fermented drinks.[J]. Journal of Beijing Forestry University, 2013, 35(5): 139-143.
    [7]GUO Qing-qi, ZHANG Na, LI Meng-yun, ZHANG Zhi, WANG Zhen-yu. Relationship between polyphenols and antioxidation in larch pine cones and altitude[J]. Journal of Beijing Forestry University, 2013, 35(1): 59-63.
    [8]CHEN Jian, SUN Ai-dong, GAO Xue-juan, TAO Xiao-yun, WANG Shan-shan. .Extraction and antioxidation of anthocyanins from blueberry.[J]. Journal of Beijing Forestry University, 2011, 33(2): 126-129.
    [9]JIN Ying, SUN Ai-dong, HU Xiao-dan, WANG Xiao-nan. Ultrasonic extraction and antioxidant activities of apple polyphenols[J]. Journal of Beijing Forestry University, 2007, 29(5): 137-141. DOI: 10.13332/j.1000-1522.2007.05.025
    [10]WANG Rui-gang, CHEN Shao-liang, LIU Li-yuan, HAO Zhi-yong, WENG Hai-jiao, LI He, YANG Shuang, DUAN Shan. Genotypic differences in antioxidative ability and salt tolerance of three poplars under sact stress[J]. Journal of Beijing Forestry University, 2005, 27(3): 46-52.
  • Cited by

    Periodical cited type(8)

    1. 兰宇铭. 基于CiteSpace的国内红松研究趋势与热点分析. 辽宁林业科技. 2022(01): 33-39 .
    2. 都津铭,张萍,高德. 丁香精油与茶多酚复合抗菌液的抑菌活性协同作用及抗氧化活性. 现代食品科技. 2021(10): 87-95 .
    3. 李晓娇,李悦,董锦,张化艳,宋志姣. 云南松针精油的提取及抗氧化活性研究. 中国食品添加剂. 2020(07): 27-35 .
    4. 龚婷,张敏,王海珠,宗学凤,廖林正. 大叶茜草精油挥发性物质抑菌及抗氧化活性研究. 西南师范大学学报(自然科学版). 2019(06): 54-59 .
    5. 岳鑫,包怡红. 基于荧光及紫外光谱法对红松种鳞多酚与乳清蛋白相互作用的研究. 现代食品科技. 2019(07): 114-120 .
    6. 郭奇泳,张艳,石茂军,张琪瑶,吴聪,赵玉红. 烘焙对红松种籽衣活性成分含量及抗氧化活性的影响. 现代食品科技. 2018(12): 159-166+158 .
    7. 樊梓鸾,张艳东,张华,王振宇,包怡红. 红松松针精油抗氧化和抑菌活性研究. 北京林业大学学报. 2017(08): 98-103 . 本站查看
    8. 樊梓鸾,陈凯莉,高芯,包怡红. 五种松针多酚的提取优化及抗氧化活性研究. 现代食品科技. 2017(08): 211-220 .

    Other cited types(3)

Catalog

    Article views (739) PDF downloads (92) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return