Citation: | Gao Yonglong, Sun Yanli, Xu Mingze, Liu Shan. Variation characteristics in leaf functional traits of woody plants in deciduous broadleaved forest community in Baihua Mountain of Beijing[J]. Journal of Beijing Forestry University, 2024, 46(4): 40-51. DOI: 10.12171/j.1000-1522.20220462 |
This study aimed to provide a theoretical basis for elucidating the coexistence mechanism of typical temperate deciduous broadleaved woody plants by revealing the variation characteristics, sources of variation, and interrelationships among functional traits of leaf morphology and biochemical traits of different life forms of plants.
We investigated 8 leaf functional traits for 23 woody plants, including 12 shrubs and 11 trees in a deciduous broadleaved forest in Baihuashan Nature Reserve in Beijing, analyzed the variation characteristics of the leaf functional traits and relationships between these traits, and further examined the driving forces of the variations and plant ecological adaptation strategies.
(1) There was no significant difference in leaf carbon, nitrogen and phosphorus content, leaf relative water content and leaf tissue density between tree and shrub species. However, the specific leaf area of tree species was significantly lower than that of shrub species, and leaf thickness and leaf dry matter content were significantly higher than that of shrub species. (2) For most leaf traits, species was the best factor to explain the variation in leaf functional traits. The variations in leaf thickness and specific leaf area mainly came from species itself and life form, and the variation in leaf dry matter content was explained by species, individuals and life form. (3) In addition, the results of trait information axis showed that most shrub species were located at the end of the fast investment income of the leaf economic spectrum, while tree species were located at the end of the slower investment income. These differences indicated that there were diverse trade-off strategies for plant traits to adapt to environmental heterogeneity, and according to our findings, the specific leaf area was the key variable to divide the ecological strategies of two life-form plants.
Different life-form woody plants can acclimate to the resource variation along a vertical canopy gradient by optimizing a combination of leaf structural traits. The slight environmental differences between habitats will accelerate niche differentiation of coexisting plants in the community.
[1] |
Violle C, Navas M L, Vile D, et al. Let the concept of trait be functional![J]. Oikos, 2007, 116: 882−892.
|
[2] |
刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学:生命科学, 2015, 45(4): 325−339. doi: 10.1360/N052014-00244
Liu X J, Ma K P. Plant functional traits: concepts, applications and future directions[J]. Scientia Sinica: Vitae, 2015, 45(4): 325−339. doi: 10.1360/N052014-00244
|
[3] |
Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821−827. doi: 10.1038/nature02403
|
[4] |
陈莹婷, 许振柱. 植物叶经济谱的研究进展[J]. 植物生态学报, 2014, 38: 1135−1153. doi: 10.3724/SP.J.1258.2014.00108
Chen Y T, Xu Z Z. Review on research of leaf economics spectrum[J]. Chinese Journal of Plant Ecology, 2014, 38: 1135−1153. doi: 10.3724/SP.J.1258.2014.00108
|
[5] |
王钊颖, 陈晓萍, 程英, 等. 武夷山49种木本植物叶片与细根经济谱[J]. 植物生态学报, 2021, 45(3): 242−252. doi: 10.17521/cjpe.2020.0280
Wang Z Y, Chen X P, Cheng Y, et al. Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains[J]. Chinese Journal of Plant Ecology, 2021, 45(3): 242−252. doi: 10.17521/cjpe.2020.0280
|
[6] |
宋贺, 于鸿莹, 陈莹婷, 等. 北京植物园不同功能型植物叶经济谱[J]. 应用生态学报, 2016, 27(6): 1861−1869.
Song H, Yu H Y, Chen Y T, et al. Leaf economics spectrum among different plant functional types in Beijing Botanical Garden, China[J]. Chinese Journal of Applied Ecology, 2016, 27(6): 1861−1869.
|
[7] |
刘福德, 王中生, 张明, 等. 海南岛热带山地雨林幼苗幼树光合与叶氮、叶磷及比叶面积的关系[J]. 生态学报, 2007, 27(11): 4651−4661.
Liu D F, Wang Z S, Zhang M, et al. Photosynthesis in relation to leaf nitrogen, phosphorus and specific leaf area of seedings and saplings in tropical montane rain forest of Hainan Island, South China[J]. Acta Ecologica Sinica, 2007, 27(11): 4651−4661.
|
[8] |
庞世龙, 欧芷阳, 申文辉, 等. 桂西南喀斯特地区优势木本经济植物叶功能性状变异及其适应策略[J]. 广西植物, 2021, 41(5): 707−714.
Pang S L, Ou Z Y, Shen W H, et al. Leaf function traits variations and adaptive strategies of dominant woody economic plants in karst area of Southwest Guangxi[J]. Guihaia, 2021, 41(5): 707−714.
|
[9] |
Onoda Y, Wright I J, Evans J R, et al. Physiological and structural tradeoffs underlying the leaf economics spectrum[J]. New Phytologist, 2017, 214(4): 1447−1463. doi: 10.1111/nph.14496
|
[10] |
Zhao Y T, Ali A, Yan E R. The plant economics spectrum is structured by leaf habits and growth forms across subtropical species[J]. Tree Physiology, 2017, 37: 173−185.
|
[11] |
刘润红, 白金连, 包含, 等. 桂林岩溶石山青冈群落主要木本植物功能性状变异与关联[J]. 植物生态学报, 2020, 44(8): 828−841. doi: 10.17521/cjpe.2019.0146
Liu R H, Bai J L, Bao H, et al. Variation and correlation in functional traits of main woody plants in the Cyclobalanopsis glauca community in the karst hills of Guilin, southwest China[J]. Chinese Journal of Plant Ecology, 2020, 44(8): 828−841. doi: 10.17521/cjpe.2019.0146
|
[12] |
Messier J, McGill1 B J, Lechowicz M J. How do traits vary across ecological scales? a case for trait-based ecology[J]. Ecology Letters, 2010, 13: 838−848.
|
[13] |
Ávila-Lovera E, Urich R, Coronel I, et al. Seasonal gas exchange and resource-use efficiency in evergreen versus deciduous species from a tropical dry forest[J]. Tree Physiology, 2019, 39: 1561−1571. doi: 10.1093/treephys/tpz060
|
[14] |
代远萌, 李满乐, 徐铭泽, 等. 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状特征[J]. 植物生态学报, 2022, 46(11): 1376−1387. doi: 10.17521/cjpe.2022.0257
Dai Y M, Li M L, Xu M Z, et al. Leaf traits of Artemisia ordosica at different dune fixation stages in Mau Us Sandy Land[J]. Chinese Journal of Plant Ecology, 2022, 46(11): 1376−1387. doi: 10.17521/cjpe.2022.0257
|
[15] |
何念鹏, 刘聪聪, 张佳慧, 等. 植物性状研究的机遇与挑战: 从器官到群落[J]. 生态学报, 2018, 38(19): 6787−6796.
He N P, Liu C C, Zhang J H, et al. Perspectives and challenges in plant traits: from organs to communities[J]. Acta Ecologica Sinica, 2018, 38(19): 6787−6796.
|
[16] |
Adler P B, Salguero-Gómez R, Compagnoni A, et al. Functional traits explain variation in plant life history strategies[J]. PNAS, 2014, 111: 740−745. doi: 10.1073/pnas.1315179111
|
[17] |
Winkler D E, Belnap J, Duniway M C, et al. Seasonal and individual event-responsiveness are key determinants of carbon exchange across plant functional types[J]. Oecologia, 2020, 193: 811−825. doi: 10.1007/s00442-020-04718-5
|
[18] |
Coble A P, Fogel M L, Parker G G. Canopy gradients in leaf functional traits for species that differ in growth strategies and shade tolerance[J]. Tree Physiology, 2017, 37(10): 1415−1425. doi: 10.1093/treephys/tpx048
|
[19] |
Henn J J, Buzzard V, Enquist B J, et al. Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change[J]. Frontiers in Plant Science, 2018, 9: 1548. doi: 10.3389/fpls.2018.01548
|
[20] |
Siefert A, Violle C, Chalmandrier L, et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities[J]. Ecology Letters, 2015, 18: 1406−1419. doi: 10.1111/ele.12508
|
[21] |
Ackerly D D, Cornwell W K. A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components[J]. Ecology Letters, 2007, 10: 135−145. doi: 10.1111/j.1461-0248.2006.01006.x
|
[22] |
Jung V, Violle C, Mondy C, et al. Intraspecific variability and trait-based community assembly[J]. Journal of Ecology, 2010, 98: 1134−1140. doi: 10.1111/j.1365-2745.2010.01687.x
|
[23] |
郭志文, 赵文霞, 罗久富, 等. 大岗山亚热带常绿阔叶林16 种木本植物功能性状的变异特征[J]. 福建师范大学学报, 2019, 35(1): 82−87.
Guo Z W, Zhao W X, Luo J F, et al. The variation characteristics of plant functional traits among 16 woody plants in subtropical broad-leaved forest at Dagang Mountain[J]. Journal of Fujian Normal University, 2019, 35(1): 82−87.
|
[24] |
唐青青, 黄永涛, 丁易, 等. 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异[J]. 生物多样性, 2016, 24(3): 262−270. doi: 10.17520/biods.2015200
Tang Q Q, Huang Y T, Ding Y, et al. Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests[J]. Biodiversity Science, 2016, 24(3): 262−270. doi: 10.17520/biods.2015200
|
[25] |
江蓝, 魏晨思, 何中声, 等. 格氏栲天然林林窗植物群落功能性状的变异[J]. 植物生态学报, 2022, 46(3): 267−279. doi: 10.17521/cjpe.2021.0350
Jiang L, Wei C S, He Z S, et al. Functional trait variation of plant communities in canopy gaps of Castanopsis kawakamii natural forest[J]. Chinese Journal of Plant Ecology, 2022, 46(3): 267−279. doi: 10.17521/cjpe.2021.0350
|
[26] |
Niinemets U, Keenan T F, Hallik L. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types[J]. New Phytologist, 2015, 205: 973−993. doi: 10.1111/nph.13096
|
[27] |
郑坚, 吴朝辉, 陈秋夏, 等. 遮荫对降香黄檀幼苗生长和生理的影响[J]. 林业科学, 2016, 52(12): 50−57.
Zheng J, Wu Z H, Chen Q X, et al. Influence of shading on growth and physiology of Dalbergia odorifera seedlings[J]. Scientia Silvae Sinicae, 2016, 52(12): 50−57.
|
[28] |
庞志强, 卢炜丽, 姜丽莎, 等. 滇中喀斯特41 种不同生长型植物叶性状研究[J]. 广西植物, 2019, 39(8): 1126−1138.
Pang Z Q, Lu W L, Jiang L S, et al. Leaf traits of different growing plants in karst area of Shilin, China[J]. Guihaia, 2019, 39(8): 1126−1138.
|
[29] |
罗恬, 俞方圆, 练琚愉, 等. 冠层垂直高度对植物叶片功能性状的影响: 以鼎湖山南亚热带常绿阔叶林为例[J]. 生物多样性, 2022, 30(5):4−17.
Luo T, Yu F Y, Lian J Y, et al. Impact of canopy vertical height on leaf functional traits in a lower subtropical evergreen broad-leaved forest of Dinghushan[J]. Biodiversity Science, 2022, 30(5): 4−17.
|
[30] |
武盼盼, 曾利剑, 雷平, 等. 江西武夷山南方铁杉林主要树种叶片养分含量及再吸收效率[J]. 林业科学, 2022, 58(1): 12−21.
Wu P P, Zeng L J, Lei P, et al. Content of leaf nutrients and resorption efficiency of major tree species in Tsuga chinensis forest in Wuyi Mountain, Jiangxi Province[J]. Scientia Silvae Sinicae, 2022, 58(1): 12−21.
|
[31] |
黄小波, 刘万德, 苏建荣, 等. 云南普洱季风常绿阔叶林152种木本植物叶片C、N、P 化学计量特征[J]. 生态学杂志, 2016, 35(3): 567−575.
Huang X B, Liu W D, Su J R, et al. Stoichiometry of leaf C, N and P across 152 woody species of a monsoon broad-leaved evergreen forest in Pu’ er, Yunnan Province[J]. Chinese Journal of Ecology, 2016, 35(3): 567−575.
|
[32] |
赵红洋, 李玉霖, 王新源, 等. 科尔沁沙地52种植物叶片性状变异特征研究[J]. 中国沙漠, 2010, 30(6): 1292−1298.
Zhao H Y, Li Y L, Wang X Y, et al. Variations in leaf traits of 52 plants in Horqin Sand Land[J]. Journal of Desert Research, 2010, 30(6): 1292−1298.
|
[33] |
胡淑萍, 余新晓, 刘彦, 等. 北京百花山落叶阔叶林群落的物种多样性特征[J]. 中国水土保持科学, 2008, 6(3): 102−106.
Hu S P, Yu X X, Liu Y, et al. Species diversity of deciduous broad-leaved forest communities in Baihua Mountain, Beijing[J]. Science of Soil and Water Conservation, 2008, 6(3): 102−106.
|
[34] |
Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51: 335−380. doi: 10.1071/BT02124
|
[35] |
Pérez-Harguindeguy, Díaz S, Garnier E, et al. New handbook for standardised measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2016, 64: 715−716. doi: 10.1071/BT12225_CO
|
[36] |
姜晓燕, 高圣杰, 蒋燕, 等. 毛乌素沙地植被不同恢复阶段植物群落物种多样性、功能多样性和系统发育多样性[J]. 生物多样性, 2022, 30(5): 18−28.
Jiang X Y, Gao S J, Jiang Y, et al. Species diversity, functional diversity, and phylogenetic diversity in plant communities at different phases of vegetation restoration in the Mu Us Sandy Grassland[J]. Biodiversity Science, 2022, 30(5):18−28.
|
[37] |
de Long J R, Jackson B G, Wilkinson A, et al. Relationships between plant traits, soil properties and carbon fluxes differ between monocultures and mixed communities in temperate grassland[J]. Journal of Ecology, 2019, 107: 1704−1719. doi: 10.1111/1365-2745.13160
|
[38] |
宋彦涛, 周道玮, 王平, 等. 松嫩草地66 种草本植物叶片性状特征[J]. 生态学报, 2013, 33(1): 79−88. doi: 10.5846/stxb201111041666
Song Y T, Zhou D W, Wang P, et al. Leaf traits of 66 herbaceous species in Songnen grassland in Northeast China[J]. Acta Ecologica Sinica, 2013, 33(1): 79−88. doi: 10.5846/stxb201111041666
|
[39] |
李鸿博, 许云蕾, 余志祥, 等. 金沙江干热河谷典型植物叶片C、N、P生态化学计量特征研究[J]. 西北林学院学报, 2021, 36(3): 10−16.
Li H B, Xu Y L, Yu Z X, et al. Eco-stoichiometric characteristics pf C, N and P in the leaves of typical plants in dry-hot valley of Jinsha River[J]. Journal of Northwest Forestry University, 2021, 36(3): 10−16.
|
[40] |
蔡琴, 丁俊祥, 张子良, 等. 青藏高原东缘主要针叶树种叶片碳氮磷化学计量分布格局及其驱动因素[J]. 植物生态学报, 2019, 43(12): 1048−1060. doi: 10.17521/cjpe.2019.0221
Cai Q, Ding J X, Zhang Z L, et al. Distribution patterns and driving factors of leaf C, N and P stoichiometry of coniferous species on the eastern Qinghai-Xizang Plateau, China[J]. Chinese Journal of Plant Ecology, 2019, 43(12): 1048−1060. doi: 10.17521/cjpe.2019.0221
|
[41] |
杨蕾, 孙晗, 樊艳文, 等. 长白山木本植物叶片氮磷含量的海拔梯度格局及影响因子[J]. 植物生态学报, 2017, 41(12): 1228−1238. doi: 10.17521/cjpe.2017.0115
Yang L, Sun H, Fan Y W, et al. Changes in leaf nitrogen and phosphorus stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, China[J]. Chinese Journal of Plant Ecology, 2017, 41(12): 1228−1238. doi: 10.17521/cjpe.2017.0115
|
[42] |
韩文轩, 吴漪, 汤璐瑛, 等. 北京及周边地区植物叶的碳氮磷元素计量特征[J]. 北京大学学报(自然科学版), 2009, 45(5): 855−859.
Han W X, Wu Y, Tang L Y, et al. Leaf carbon, nitrogen and phosphorus stoichiometry across plant species in Beijing and its periphery[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(5): 855−859.
|
[43] |
Han W X, Fang J Y, Guo D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377−385. doi: 10.1111/j.1469-8137.2005.01530.x
|
[44] |
Vilà-Cabrera A, Martínez-Vilalta J, Retana J. Functional trait variation along environmental gradients in temperate and Mediterranean trees[J]. Global Ecology and Biogeography, 2015, 24: 1377−138. doi: 10.1111/geb.12379
|
[45] |
钟巧连, 刘立斌, 许鑫, 等. 黔中喀斯特木本植物功能性状变异及其适应策略[J]. 植物生态学报, 2018, 42(5): 562−572. doi: 10.17521/cjpe.2017.0270
Zhong Q L, Liu L B, Xu X, et al. Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China[J]. Chinese Journal of Plant Ecology, 2018, 42(5): 562−572. doi: 10.17521/cjpe.2017.0270
|
[46] |
李艳朋, 倪云龙, 许涵, 等. 鼎湖山南亚热带常绿阔叶林植物功能性状变异与不同垂直层次个体生长的关联[J]. 生物多样性, 2021, 29(9): 1186−1197. doi: 10.17520/biods.2021205
Li Y P, Ni Y L, Xu H, et al. Relationship between variation of plant functional traits and individual growth at different vertical layers in a subtropical evergreen broad-leaved forest of Dinghushan[J]. Biodiversity Science, 2021, 29(9): 1186−1197. doi: 10.17520/biods.2021205
|
[47] |
Ye Y H, Kitayama K, Onoda Y. A cost-benefit analysis of leaf carbon economy with consideration of seasonal changes in leaf traits for sympatric deciduous and evergreen congeners: implications for their coexistence[J]. New Phytologist, 2022, 234: 1047−1058. doi: 10.1111/nph.18022
|
[48] |
Auger S, Shipley B. Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest[J]. Journal of Vegetation Science, 2013, 24: 419−428. doi: 10.1111/j.1654-1103.2012.01473.x
|
[49] |
宝乐, 刘艳红. 东灵山地区不同森林群落叶功能性状比较[J]. 生态学报, 2009, 29(7): 3693−3703. doi: 10.3321/j.issn:1000-0933.2009.07.030
Bao L, Liu Y H. Comparison of leaf functional traits in different forest communities in Mt. Dongling of Beijing[J]. Acta Ecologica Sinica, 2009, 29(7): 3693−3703. doi: 10.3321/j.issn:1000-0933.2009.07.030
|
[50] |
罗达, 史彦江, 宋锋惠, 等. 38个榛种质资源叶功能性状与光合特征变异及其相关性[J]. 生态学杂志, 2021, 40(1): 11−22.
Luo D, Shi Y J, Song F H, et al. Variation and correlation of leaf functional traits and photosynthetic characteristics of 38 hazelnut germplasm resources[J]. Chinese Journal of Ecology, 2021, 40(1): 11−22.
|
[51] |
Spasojevic M J, Suding K N. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes[J]. Journal of Ecology, 2012, 100: 652−661. doi: 10.1111/j.1365-2745.2011.01945.x
|
[52] |
程毅康, 张辉, 王旭, 等. 功能多样性和谱系多样性对热带云雾林群落构建的影响[J]. 植物生态学报, 2019, 43(3): 217−226. doi: 10.17521/cjpe.2019.0003
Cheng Y K, Zhang H, Wang X, et al. Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly[J]. Chinese Journal of Plant Ecology, 2019, 43(3): 217−226. doi: 10.17521/cjpe.2019.0003
|