• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhou Lai, Cheng Xiaofang, Zhang Mengtao. Model construction of Larix principis-rupprechtii canopy volume and surface area based on BP neural network[J]. Journal of Beijing Forestry University, 2024, 46(8): 94-100. DOI: 10.12171/j.1000-1522.20230166
Citation: Zhou Lai, Cheng Xiaofang, Zhang Mengtao. Model construction of Larix principis-rupprechtii canopy volume and surface area based on BP neural network[J]. Journal of Beijing Forestry University, 2024, 46(8): 94-100. DOI: 10.12171/j.1000-1522.20230166

Model construction of Larix principis-rupprechtii canopy volume and surface area based on BP neural network

More Information
  • Received Date: June 30, 2023
  • Revised Date: March 13, 2024
  • Accepted Date: May 05, 2024
  • Available Online: May 07, 2024
  • Objective 

    The BP neural network model was applied to predict the canopy volume and surface area of Larix principis-rupprechtii, and the optimal form of canopy volume and surface area estimation model of L. principis-rupprechtii was explored in order to provide new ideas for the future prediction model.

    Method 

    Taking L. principis-rupprechtii in Pangquangou Nature Reserve of Shanxi Province, northern China as the research object, the canopy volume and surface area of L. principis-rupprechtii were constructed using BP neural network based on 678 observational data obtained from six (60 m × 60 m) fixed plots.

    Result 

    Through model training, the canopy volume and surface area estimation model of L. principis-rupprechtii was obtained based on BP neural network. Based on BP neural network, the number of input layer nodes∶number of hidden layer nodes∶number of output layer nodes was 6∶9∶1. Canopy volume data R2 = 0.948, MAE = 5.40 m3, RMSE = 18.40; surface area data R2 = 0.957, MAE = 3.33 m2, RMSE = 14.41. The performance of L. principis-rupprechtii canopy volume and surface area model based on BP neural network was positively correlated with the number of input factors. The optimal model had 6 input factors, i.e. crown width, tree height, DBH, max. crown height, projection length of the first live branch in the direction perpendicular to trunk, and crown base height.

    Conclusion 

    The input variables include information related to trunk size and crown configuration characteristics. The model can realize the prediction for the crown volume and surface area of Larix principis-rupprechtii trees effectively.

  • [1]
    张鹏, 王新杰, 高志雄, 等. 将乐地区马尾松最优冠幅模型研究[J]. 西北林学院学报, 2015, 30(4): 94−98.

    Zhang P, Wang X J, Gao Z X, et al. Optimal crown diameter models for Pinus massoniana in Jiangle, Fujian Province[J]. Journal of Northwest Forestry University, 2015, 30(4): 94−98.
    [2]
    Thomas M, Dominik S, Hans-Joachim K, et al. The effect of forest structure on drought stress in beech forests (Fagus sylvatica L.)[J]. Forest Ecology and Management, 2024, 554: 121667.
    [3]
    王盼琦. 华北落叶松天然林单木树冠结构研究[D]. 长沙: 中南林业科技大学, 2022.

    Wang P Q. Study on single tree crown structure of Larix principis-rupprechtii natural forest[D]. Changsha: Central South University of Forestry and Technology, 2022.
    [4]
    Sprinz P T, Burkhart H E. Relationships between tree crown, stem, and stand characteristics in unthinned loblolly pine plantations[J]. Canadian Journal of Forest Research, 1987, 17(6): 534−538.
    [5]
    Smith W R, Farrar R M, Murphy P A, et al. Crown and basal area relationships of open-grown sourthern pines for modeling competition and growth[J]. Canadian Journal of Forest Research, 1992, 22(3): 341−347.
    [6]
    Ford E D. Branching, crown structure, and the control of timber production[C]//Connell M G R, Jackson J E I. Attributes of trees as crop plants. Huntingdon: Institute of Terrestrial Ecology, 1985: 228−245.
    [7]
    Hamilton G J. The dependence of volume increment of individual trees on dominance, crown dimensions, and competition[J]. Forestry, 1969, 12(1): 133−134.
    [8]
    Cattaneo N, Schneider R, Bravo F, et al. Inter-specific competition of tree congeners induces changes in crown architecture in Mediterranean pine mixtures[J]. Forest Ecology and Management, 2020, 476: 118471.
    [9]
    单凯丽, 臧颢, 潘萍, 等. 赣中天然闽楠单木冠幅预测模型的研究[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 88−96.

    Shan K L, Zang H, Pan P, et al. Individual tree crown width prediction models for natural Phoebe bournei in central Jiangxi Province[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(1): 88−96.
    [10]
    徐宏涛, 孙玉军, 吴明钦, 等. 杉木人工林树冠表面积及体积模型的研究[J]. 中南林业科技大学学报, 2015, 35(9): 88−92, 103.

    Xu H T, Sun Y J, Wu M Q, et al. Predicting models of crown surface area and crown volume for Cunninghamia lanceolata plantation[J]. Journal of Central South University of Forestry & Technology, 2015, 35(9): 88−92, 103.
    [11]
    Pretzsch H. Tree growth as affected by stem and crown structure[J]. Trees, 2021, 35(3): 1−14.
    [12]
    Brūmelis G, Brūmelis I, Elferts D, et al. Estimates of tree canopy closure and basal area as proxies for tree crown volume at a stand scale[J]. Forests, 2020, 11(11): 1180.
    [13]
    付尧, 王新杰, 孙玉军, 等. 树冠提取技术研究进展[J]. 世界林业研究, 2013, 26(4): 38−42.

    Fu Y, Wang X J, Sun Y J, et al. A study of tree crown information extraction method[J]. World Forestry Research, 2013, 26(4): 38−42.
    [14]
    董亚涵, 李永强, 李鹏鹏, 等. 基于改进凸包算法的树冠轮廓点提取与体积计算[J]. 测绘工程, 2018, 27(8): 66−71.

    Dong Y H, Li Y Q, Li P P, et al. Tree crown outline points extracting and volume calculation based on improved convex hull algorithm[J]. Engineering of Surveying and Mapping, 2018, 27(8): 66−71.
    [15]
    刘勇, 朱子卉, 卢佶,等. 基于激光雷达点云数据的单木树冠体积测量方法[J]. 林业勘查设计, 2022, 51(6): 18−22.

    Liu Y, Z, Zhu Z H, Lu J, et al. Measurement method of single tree crown volume based on lidar point cloud data[J]. Forest Investigation Design, 2022, 51(6): 18−22.
    [16]
    巩垠熙, 何诚, 冯仲科, 等. 基于改进Delaunay算法的树冠三维重构单木因子提取[J]. 农业机械学报, 2013, 44(2): 192−199.

    Gong Y X, He C, Feng Z K, et al. Amended Delaunay algorithm for single tree factor extraction using 3-D crown modeling[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(2): 192−199.
    [17]
    Daniel Z, Sruthi M K M, Gabriel A, et al. Vertical distribution of trunk and crown volume in tropical trees[J]. Forest Ecology and Management, 2022, 508: 120056.
    [18]
    高润梅, 石晓东, 王林, 等. 当年生华北落叶松幼苗的耐旱性[J]. 林业科学, 2015, 51(7): 148−156.

    Gao R M, Shi X D, Wang L, et al. Drought resistance of one-year-old seedlings of Larix principis-rupprechtii[J]. Scientia Silvae Sinicae, 2015, 51(7): 148−156.
    [19]
    沈剑波, 王应宽, 雷相东, 等. 基于BP神经网络的广东省针阔混交异龄林立地质量评价[J]. 北京林业大学学报, 2019, 41(5): 38−47.

    Shen J B, Wang Y K, Lei X D, et al. Site quality evaluation of uneven-aged mixed coniferous and broadleaved stands in Guangdong Province of southern China based on BP neural network[J]. Journal of Beijing Forestry University, 2019, 41(5): 38−47.
    [20]
    吴娇娇, 欧光龙, 舒清态. 基于BP神经网络模型思茅松天然林生物量遥感估测[J]. 中南林业科技大学学报, 2017, 37(7): 30−35.

    Wu J J, Ou G L, Shu Q T. Remote sensing estimation of the biomass of Pinus kesiya var. langbianensis forest based on BP neural networks[J]. Journal of Central South University of Forestry & Technology, 2017, 37(7): 30−35.
    [21]
    徐志扬. 基于BP神经网络的马尾松树高曲线模型[J]. 林业调查规划, 2015, 40(2): 6−8, 73.

    Xu Z Y. Height-diameter model for Pinus massoniana based on BP neural network[J]. Forest Inventory and Planning, 2015, 40(2): 6−8, 73.
    [22]
    董云飞, 孙玉军, 王轶夫, 等. 基于BP神经网络的杉木标准树高曲线[J]. 东北林业大学学报, 2014, 42(7): 154−165.

    Dong Y F, Sun Y J, Wang Y F, et al. Generalized height-diameter model for Chinese fir based on BP neural network[J]. Journal of Northeast Forestry University, 2014, 42(7): 154−165.
    [23]
    和璐璐, 张萱, 章毓文, 等. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1−17.

    He L L, Zhang X, Zhang Y W, et al. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China[J]. Chinese Journal of Plant Ecology, 2023, 47(11): 1−17.
    [24]
    Looney C E, Jianwei Z. Site quality and intensive early stand management practices affect growth dominance, structural complexity, and tree growth in ponderosa pine plantations[J]. Forest Ecology and Management, 2022, 519: 120318.
    [25]
    Ruiting L, Yujun S, Siyu Q, et al. Relative effects of climate, stand environment and tree characteristics on annual tree growth in subtropical Cunninghamia lanceolata forests[J]. Agricultural and Forest Meteorology, 2023, 342: 109711.
    [26]
    Li Q C, Liu Z L, Jin G Z. Impacts of stand density on tree crown structure and biomass: a global meta-analysis[J]. Agricultural and Forest Meteorology, 2022, 326: 109181.
    [27]
    赵婷婷, 王冬至, 张冬燕, 等. 塞罕坝华北落叶松人工林树冠外部轮廓模型[J]. 林业科学, 2021, 57(5): 108−118.

    Zhao T T, Wang D Z, Zhang D Y, et al. Crown prediction model of Larix principis-rupprechtii plantation in Saihanba of Hebei Province, Northern China[J]. Scientia Silvae Sinicae, 2021, 57(5): 108−118.
    [28]
    曾伟生, 唐守正. 利用度量误差模型方法建立相容性立木生物量方程系统[J]. 林业科学研究, 2010, 23(6): 797−803.

    Zeng W S, Tang S Z. Using measurement error model method to establish a compatible singl-tree biomass equation system[J]. Forest Research, 2010, 23(6): 797−803.
    [29]
    梁瑞婷, 王轶夫, 邱思玉, 等. 人工神经网络与相容性生物量模型预测单木地上生物量的比较[J]. 应用生态学报, 2022, 33(1): 9−16.

    Liang R T, Wang Y F, Qiu S Y, et al. Comparison of artificial neural networks with compatible biomass models for predicting aboveground biomass of individual tree[J]. Chinese Journal of Applied Ecology, 2022, 33(1): 9−16.
    [30]
    吴明钦. 福建杉木人工林树冠结构研究[D]. 北京: 北京林业大学, 2014.

    Wu M Q. A study on crown structure of Cunninghamia lanceolata plantation in Fujian[D]. Beijing: Beijing Forestry University, 2014.
  • Related Articles

    [1]Ren Qiwen, Wang Yuzhong, Xu Zhenhua, Zhang Shuzi. Carrying density of Larix principis-rupprechtii plantations based on water balance[J]. Journal of Beijing Forestry University, 2024, 46(7): 1-8. DOI: 10.12171/j.1000-1522.20240023
    [2]Hao Guobao, Wang Lidong, Li Yan, Li Fan, Cui Jingting, Jia Zhongkui. Effects of nitrogen addition on the branch CO2 efflux of Larix principis-rupprechtii[J]. Journal of Beijing Forestry University, 2023, 45(10): 28-35. DOI: 10.12171/j.1000-1522.20220336
    [3]Chang Xu, Qiu Xincai, Liu Xin, Peng Daoli, Cheng Shun. Soil fertility quality evaluation of pure and mixed Larix principis-rupprechtii forests in Saihanba, Hebei Province of northern China[J]. Journal of Beijing Forestry University, 2021, 43(8): 50-59. DOI: 10.12171/j.1000-1522.20210189
    [4]Wang Xiangzhen, Liu Yanqing, Zhou Yunhong, Wang Lidong, Si Ruixue, Lu Jingxing, Jia Zhongkui. Effects of different treatments on decomposition of Larix principis-rupprechtii tending residue[J]. Journal of Beijing Forestry University, 2021, 43(5): 15-23. DOI: 10.12171/j.1000-1522.20200345
    [5]Zhang Jianfei, Wang Chun, Xu Wenwen, Huang Xuanrui, Zhang Zhidong. Changes in soil nutrients and bacterial communities of Larix principis-rupprechtii plantations of different generations[J]. Journal of Beijing Forestry University, 2020, 42(3): 36-45. DOI: 10.12171/j.1000-1522.20190256
    [6]WANG Dong-zhi, ZHANG Dong-yan, ZHANG Zhi-dong, HUANG Xuan-rui. Prediction model for basal area of Larix principis-rupprechtii plantation in Saihanba of Hebei Province, northern China[J]. Journal of Beijing Forestry University, 2017, 39(7): 10-17. DOI: 10.13332/j.1000-1522.20170072
    [7]ZHAO Tian-liang. Species diversity of Larix principis-rupprechtii communities in Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2017, 39(6): 45-50. DOI: 10.13332/j.1000-1522.20170067
    [8]ZHANG Wen-yi, JING Tian-zhong, YAN Shan-chun. Studies on prediction models of Dendrolimus superans occurrence area based on machine learning[J]. Journal of Beijing Forestry University, 2017, 39(1): 85-93. DOI: 10.13332/j.1000-1522.20160205
    [9]ZHAO Kuang-ji, WANG Li-dong, WANG Li-jun, JIA Zhong-kui, MA Lü-yi. Stock volume and productivity of Larix principis-rupprechtii in northern and northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(2): 24-31. DOI: 10.13332/j.cnki.jbfu.2015.02.011
    [10]LI Qing-mei, LIU Yan, CHEN Huai-liang, MA Feng-yun, HOU Long-yu. Vigor and physiological properties of ultra-drying seeds of Larix principis-rupprechtii Mayr. and L. kaempferi(Lamb.)[J]. Journal of Beijing Forestry University, 2011, 33(2): 25-30.

Catalog

    Article views (1392) PDF downloads (37) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return