• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Qi Yongliang, Ke Meng, Wu Zhiyong, Si Huayu, Liu Kelin, Yue Han, Sun Yuhan, Li Yun. Dynamics of female flower and seed growth and development in Quercus dentata[J]. Journal of Beijing Forestry University, 2024, 46(3): 17-26. DOI: 10.12171/j.1000-1522.20220505
Citation: Qi Yongliang, Ke Meng, Wu Zhiyong, Si Huayu, Liu Kelin, Yue Han, Sun Yuhan, Li Yun. Dynamics of female flower and seed growth and development in Quercus dentata[J]. Journal of Beijing Forestry University, 2024, 46(3): 17-26. DOI: 10.12171/j.1000-1522.20220505

Dynamics of female flower and seed growth and development in Quercus dentata

More Information
  • Received Date: December 13, 2022
  • Revised Date: May 29, 2023
  • Accepted Date: February 19, 2024
  • Available Online: February 23, 2024
  • Objective 

    This paper aims to elucidate the reproductive cycle and developmental timing characteristics of female flowers in Quercus dentata.

    Method 

    This study used artificially pollinated female flowers at different developmental stages as experimental materials. The external morphology, seed development process, and abortion dynamics of female flowers and ovaries at different developmental stages before and after pollination were observed through morphological and histological examination methods, such as paraffin section, as well as physiological indicators.

    Result 

    (1) Throughout the entirety of female flower’s growth and development, the spiny bracts underwent a gradual process of hardening, while simultaneously transitioning from a green to yellow hue. Additionally, exhibited a continuous reduction in size, while the style underwent a shortening process. The ovary’s volume, on the other hand, experienced a continuous expansion, with the outer shell gradually thickening, ultimately culminating in the formation of brown seeds at approximately 140 d post-pollination. (2) Observation of paraffin sections showed that at 17 d after pollination, ovule was completed; at 30 d after pollination, the embryo sac matured; at 38 d after pollination, the primary endosperm nucleus appeared, and the pro-embryo formed; after about 13 d of dormancy, it underwent differentiation of globular embryo, heart-shaped embryos, torpedo-shaped embryos, and cotyledon embryos in sequence. As a nourishing tissue, the endosperm had always been in a highly divided state, and was fully absorbed and utilized by the cotyledons during the seed maturation stage, ultimately harvesting mature seeds without endosperm. (3) It was preliminarily confirmed that there were two peak periods of abortion in the entire growth cycle of Q. dentata, which were respectively at 69 d and 99 d after pollination. (4) The appearance of seed abortion was mainly manifested as browning of ovary wall of aborted embryo, shrinking of ovule, and microstructure was mainly manifested as abnormal development of integument, embryo malformation or empty embryo sac.

    Conclusion 

    This study establishes the relationship between external morphological changes and internal anatomical characteristics during the differentiation of female flowers and seed formation in Q. dentata. It provides the theoretical basis for future research on the embryology, the mechanism of flowering and fruiting, and embryo abortion mechanism of Quercus.

  • [1]
    刘苹. 北京地区三种栎属植物杂交与种子扩散研究[D]. 北京: 北京林业大学, 2020.

    Liu P. Hybridization and seed dispersal of three Quercus species in Beijing area[D]. Beijing: Beijing Forestry University, 2020.
    [2]
    王越. 基于SSR标记的槲树、蒙古—辽东栎种间杂交研究[D]. 济南: 山东大学, 2012.

    Wang Y. Natural hybridization between Quercus dentata and Q. mongolica-liaotungensis revealed by microsatellite markers[D]. Jinan: Shandong University, 2012.
    [3]
    刘媛. 同域分布栎属两近缘种形态变异与种群遗传研究[D]. 北京: 北京林业大学, 2018.

    Liu Y. Morphological variation and population genetic research in two sympatric Quercus[D]. Beijing: Beijing Forestry University, 2018.
    [4]
    李慧敏. 基于叶绿体DNA片段和核微卫星标记的槲树群体历史和遗传多样性研究[D]. 西安: 西北大学, 2018.

    Li H M. Phylogeography and genetic diversity of Quercus dentata Thunb revealed by cpDNA and nuclear SSR markers[D]. Xi’an: Northwestern University, 2018.
    [5]
    刘芬, 田敏, 王彩霞, 等. 扇脉杓兰果实生长动态及胚胎发育过程观察[J]. 植物资源与环境学报, 2012, 21(1): 28−35. doi: 10.3969/j.issn.1674-7895.2012.01.004

    Liu F, Tian M, Wang C X, et al. Observation on fruit growth dynamics and embryo development process of Cypripedium japonicum[J]. Journal of Plant Resources and Environment, 2012, 21(1): 28−35. doi: 10.3969/j.issn.1674-7895.2012.01.004
    [6]
    梁文静, 肖萍, 崔萌, 等. 油茶果实和种子生长发育的动态[J]. 南昌大学学报(理科版), 2019, 43(1): 46−52.

    Liang W J, Xiao P, Cui M, et al. The growth and development dynamics of Camellia oleifera Abel. fruits and seeds[J]. Journal of Nanchang University (Science Edition), 2019, 43(1): 46−52.
    [7]
    杜兵帅, 张卿, 曹庆芹, 等. 板栗胚胎及胚乳发育过程的形态解剖观察[J]. 北京农学院学报, 2020, 35(2): 48−52.

    Du B S, Zhang Q, Cao Q Q, et al. Morphological and anatomical observation of embryo and endosperm development of Castanea mollissima[J]. Journal of Beijing Agricultural University, 2020, 35(2): 48−52.
    [8]
    张春吉. 榛子胚败育过程中物质运输障碍发生规律及基因差异表达谱研究[D]. 吉林: 吉林师范大学, 2014.

    Zhang C J. Studies on material transport barriers and its differential gene expression profiles in the process of embryo abortion of hazelnut[D]. Jilin: Jilin Normal University, 2014.
    [9]
    Deng M, Yao K, Shi C, et al. Development of Quercus acutissima (Fagaceae) pollen tubes inside pistils during the sexual reproduction process[J]. Planta, 2022, 256(1): 16. doi: 10.1007/s00425-022-03937-9
    [10]
    Liu Y, Li Y, Song J, et al. Geometric morphometric analyses of leaf shapes in two sympatric Chinese oaks: Quercus dentata Thunb and Quercus aliena Blume (Fagaceae)[J]. Annals of Forest Science, 2018, 75(4): 90.
    [11]
    Lyu J, Song J, Liu Y, et al. Species boundaries between three sympatric Oak species: Quercus aliena, Q. dentata, and Q. variabilis at the northern edge of their distribution in China[J]. Frontiers in Plant Science, 2018, 9: 414. doi: 10.3389/fpls.2018.00414
    [12]
    王连珍, 郎庆龙, 夏兴宏, 等. 13种栎属植物叶片的气孔特征及其相关性分析和分类学意义[J]. 植物资源与环境学报, 2015, 24(2): 48−55. doi: 10.3969/j.issn.1674-7895.2015.02.07

    Wang L Z, Lang Q L, Xia X H, et al. Leaf stomatal characteristics and correlation analysis of thirteen species in Quercus Linn. and taxonomic significance[J]. Plant Resource & Environment, 2015, 24(2): 48−55. doi: 10.3969/j.issn.1674-7895.2015.02.07
    [13]
    Mai Y, Wang Z, Wang Y, et al. Anti-neuroinflammatory oleanane-type triterpenoids from the seeds of Quercus serrata Thunb[J]. Phytochemistry Letters, 2022, 47: 67−75. doi: 10.1016/j.phytol.2021.11.005
    [14]
    耿彪, 张启彤, 朱树华, 等. 槲树叶提取液对冷藏期间桃品质及抗氧化系统的影响[J]. 中国果树, 2020(1): 36−41, 47.

    Geng B, Zhang Q T, Zhu S H, et al. Effects of Quercus dentata leaves extract on quality and antioxidant system of peach during cold storage[J]. China Fruits, 2020(1): 36−41, 47.
    [15]
    张娇娇. 槲叶中槲皮素水热法提取工艺的优化研究[D]. 郑州: 郑州大学, 2020.

    Zhang J J. Optimization of hydrothermal extraction process of quercetin from mistletoe leaves[D]. Zhengzhou: Zhengzhou University, 2020.
    [16]
    曹磊, 陈伟楠, 胡增辉, 等. 盐碱胁迫对槲树幼苗生长与光合特性的影响[J]. 北京农学院学报, 2018, 33(4): 86−90.

    Cao L, Chen W N, Hu Z H, et al. Effect of saline-alkaline stress on the growth and photosynthetic characteristics of Quercus dentata seedlings[J]. Journal of Beijing Agricultural University, 2018, 33(4): 86−90.
    [17]
    郝汉, 曹磊, 陈伟楠, 等. 盐胁迫对槲树( Quercus dentata)幼苗离子平衡及其生理生化特性的影响[J]. 生态学报, 2020, 40(19): 6897−6904.

    Hao H, Cao L, Chen W N, et al. Effects of salt stress on the ion balance and physiological-biochemical characteristics of Quercus dentata seedlings[J]. Acta Ecologica Sinica, 2020, 40(19): 6897−6904.
    [18]
    祁敏, 张原野, 李嘉伟, 等. 中–日分布的槲树种群遗传多样性与遗传分化[J]. 兰州大学学报(自然科学版), 2021, 57(6): 720−726, 734.

    Qi M, Zhang Y Y, Li J W, et al. Genetic diversity and differentiation of Quercus dentata population distributed in China-Japan[J]. Journal of Lanzhou University (Natural Science Edition), 2021, 57(6): 720−726, 734.
    [19]
    Liu X, Chang E, Liu J, et al. Comparative analysis of the complete chloroplast genomes of six white oaks with high ecological amplitude in China[J]. Journal of Forestry Research, 2021, 32(5): 2203−2218.
    [20]
    Yang K, Wu J, Li X, et al. Intraspecific leaf morphological variation in Quercus dentata Thunb: a comparison of traditional and geometric morphometric methods, a pilot study[J]. Journal of Forestry Research, 2022, 33(6): 1751−1764. doi: 10.1007/s11676-022-01452-x
    [21]
    杨晓瑞. 壳斗科黧蒴栲和滇石栎受精和胚胎学初探[D]. 上海: 上海师范大学, 2017.

    Yang X R. A primary investigation on fertilization and embryology of Castanopsis fissa and Lithocarpus dealbatus (Fagaceae)[D]. Shanghai: Shanghai Normal University, 2017.
    [22]
    Du B, Zhang Q, Cao Q, et al. Morphological observation and protein expression of fertile and abortive ovules in Castanea mollissima[J]. Peer Journal, 2021, 9: e11756. doi: 10.7717/peerj.11756
    [23]
    Sorlano M, Li H, Boutilier K. Microspore embryogenesis: establishment of embryo identity and pattern in culture[J]. Plant Reproduction, 2013, 26(3): 181−196. doi: 10.1007/s00497-013-0226-7
    [24]
    谢丹容. ‘桂味’荔枝种胚败育的表现及其机理初探[D]. 广州: 华南农业大学, 2016.

    Xie D R. A primary study on seed partly abortion mechanism in Litchi cv. ‘Guiwei’[D]. Guangzhou: South China Agricultural University, 2016.
    [25]
    李造哲, 谢菲, 马青枝, 等. 披碱草胚和胚乳的发育[J]. 中国草地学报, 2016, 38(6): 98−101.

    Li Z Z, Xie F, Ma Q Z, et al. Development of embryo and endosperm of Elymus dahuricus[J]. Chinese Journal of Grassland, 2016, 38(6): 98−101.
    [26]
    Möller B K, Hove C A T, Xiang D, et al. Auxin response cell-autonomously controls ground tissue initiation in the early Arabidopsis embryo[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(12): 533−539.
    [27]
    张超越, 王迎夏, 郑艳艳, 等. 西瓜种子败育的胚胎学观察[J]. 中国瓜菜, 2019, 32(8): 134−138. doi: 10.3969/j.issn.1673-2871.2019.08.032

    Zhang C Y, Wang Y X, Zheng Y Y, et al. Embryological observations on seed abortion in watermelon[J]. China Cucurbits and Vegetables, 2019, 32(8): 134−138. doi: 10.3969/j.issn.1673-2871.2019.08.032
    [28]
    赵志珩, 黄晓露, 李开祥, 等. 广西板栗胚珠形成与胚胎发育[J]. 广西林业科学, 2018, 47(3): 306−310. doi: 10.3969/j.issn.1006-1126.2018.03.011

    Zhao Z X, Huang X L, Li K X, et al. The ovule formation and embryonic development of Castanea mollissima in Guangxi[J]. Guangxi Forestry Science, 2018, 47(3): 306−310. doi: 10.3969/j.issn.1006-1126.2018.03.011
    [29]
    高建平. 蒙古莸的胚胎学研究[D]. 呼和浩特: 内蒙古农业大学, 2010.

    Gao J P. Study on the embryology of Caryopteris mongholica Bunge[D]. Huhot: Inner Mongolia Agriculture University, 2010.
    [30]
    邵凤侠. 南方鲜食枣胚败育机理研究[D]. 长沙: 中南林业科技大学, 2019.

    Shao F X. Research on the mechanism of embryo abortion of southern China fresh-eat jujube[D]. Changsha: Central South University of Forestry & Technology, 2019.
    [31]
    Cheng Y, Zhao Y, Liu J, et al. Comparison of phytohormone biosynthesis and signal transduction pathways in developing and abortive hazelnut ovules[J]. Plant Growth Regulation, 2017, 81(1): 147−157. doi: 10.1007/s10725-016-0196-5
    [32]
    王会滨. 激素调控无籽梨种子败育及果实发育的机理解析[D]. 杨凌: 西北农林科技大学, 2021.

    Wang H B. Mechanism analysis of phytohormone regulates seed abortion and fruit development of seedless pear[D]. Yangling: Northwest A&F University, 2021.
    [33]
    Wang H, Zhang H, Liang F, et al, PbEIL1 acts upstream of PbCysp1 to regulate ovule senescence in seedless pear[J]. Horticulture Research, 2022, 8(1): 59.
    [34]
    Li Z, Jiao Y, Zhang C, et al. VvHDZ28 positively regulate salicylic acid biosynthesis during seed abortion in thompson seedless[J]. Plant Biotechnology Journal, 2021, 19(9): 1824−1838. doi: 10.1111/pbi.13596
    [35]
    陈萍. ‘檀桥’板栗花和果实发育解剖学观察[D]. 长沙: 中南林业科技大学, 2021.

    Chen P. Cytological observation on flower and fruit development of Castanea mollissima ‘Tanqiao’[D]. Changsha: Central South University of Forestry and Technology, 2021.
    [36]
    严蕾, 张荣, 石卓功. “永丰1号”板栗雌花分化组织形态学研究[J]. 北方园艺, 2018(15): 52−57.

    Yan L, Zhang R, Shi Z G. Morphological study on female flower differentiation in chestnut of ‘Yongfeng No. 1’[J]. Northern Horticulture, 2018(15): 52−57.
    [37]
    Manos P S, Zhou Z K, Cannon C H. Systematics of fagaceae: phylogenetic tests of reproductive trait evolution[J]. International Journal of Plant Sciences, 2001, 162(6): 1361−1379. doi: 10.1086/322949
  • Related Articles

    [1]Zhao Yabing, Peng Daoli, Guo Famiao, Wang Yin, Huang Jingxian. Estimating forest growing stock volume based on feature selection and machine learning[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240328
    [2]Guo Jialun, Zhong Haomin, Zhao Junbo, Chen Yao. Deresination rate prediction of Masson pine wood based on support vector regression (SVR)[J]. Journal of Beijing Forestry University, 2025, 47(3): 151-161. DOI: 10.12171/j.1000-1522.20240359
    [3]Zhou Lai, Cheng Xiaofang, Zhang Mengtao. Model construction of Larix principis-rupprechtii canopy volume and surface area based on BP neural network[J]. Journal of Beijing Forestry University, 2024, 46(8): 94-100. DOI: 10.12171/j.1000-1522.20230166
    [4]Feng Xinyan, Jia Xin, Huang Jinze, Gao Shengjie, Yuan Min, Liu Tiantian, Jin Chuan. Application of ANN-BiLSTM model to long-term gap-filling of carbon flux data in temperate desert shrub[J]. Journal of Beijing Forestry University, 2023, 45(9): 62-72. DOI: 10.12171/j.1000-1522.20220510
    [5]Zhang Hanyue, Feng Zhongke, Huang Guosheng, Yang Xueqing, Feng Zemin. Research on the growth rate model of Populus spp. considering environmental factors[J]. Journal of Beijing Forestry University, 2022, 44(11): 50-59. DOI: 10.12171/j.1000-1522.20210201
    [6]Zhang Mengku, Jiang Lichun. Prediction of bark thickness for Larix gmelinii based on machine learning[J]. Journal of Beijing Forestry University, 2022, 44(6): 54-62. DOI: 10.12171/j.1000-1522.20210097
    [7]Zhao Jing, Chen Ran, Hao Huichao, Shao Zhuang. Application progress and prospect of machine learning technology in landscape architecture[J]. Journal of Beijing Forestry University, 2021, 43(11): 137-156. DOI: 10.12171/j.1000-1522.20200313
    [8]Lei Xiangdong. Applications of machine learning algorithms in forest growth and yield prediction[J]. Journal of Beijing Forestry University, 2019, 41(12): 23-36. DOI: 10.12171/j.1000-1522.20190356
    [9]ZHANG Wen-yi, JING Tian-zhong, YAN Shan-chun. Studies on prediction models of Dendrolimus superans occurrence area based on machine learning[J]. Journal of Beijing Forestry University, 2017, 39(1): 85-93. DOI: 10.13332/j.1000-1522.20160205
    [10]LIN Zhuo, WU Cheng-zhen, HONG Wei, HONG Tao. Yield model of Cunninghamia lanceolata plantation based on back propagation neural network and support vector machine.[J]. Journal of Beijing Forestry University, 2015, 37(1): 42-54. DOI: 10.13332/j.cnki.jbfu.2015.01.008
  • Cited by

    Periodical cited type(7)

    1. 孙欣,尹紫良,赵琬婧,张治军,王清波,蔡体久,孙晓新. 灌木扩张压力下三江平原沼泽植物群落多样性变化及其土壤控制因子. 应用生态学报. 2024(04): 1016-1024 .
    2. 李元,杨海鑫,齐昊宇,喻其林,郭东罡,张全喜. 运城盐湖湿地土壤重金属污染特征与风险评价. 生态毒理学报. 2024(03): 396-406 .
    3. 管祥楠,董士伟,刘玉,张欣欣,潘瑜春,卢闯. 土壤重金属含量变化的影响因素多目标识别方法. 环境科学. 2024(08): 4791-4801 .
    4. 高明华. 长寿湖国家湿地公园退耕地土壤细菌群落多样性研究. 呼伦贝尔学院学报. 2023(03): 85-91 .
    5. 裘奕斐,王静,徐敏. 江苏滨海县近岸海域海水、沉积物和生物体重金属分布及健康风险评价. 南京师大学报(自然科学版). 2021(01): 71-78 .
    6. 李琦,赵琬婧,王瑜,原卉,王清波,刘成林,李海兴,孙晓新. 三江平原沼泽湿地典型湿地植物对重金属的富集效应. 湿地科学与管理. 2021(02): 9-13 .
    7. 刘德浩,廖文莉,陈智涛,阳艳萍,吴宝宏,舒夏竺,邓仿东. 潼湖湿地土壤重金属污染现状及生态风险评价. 林业与环境科学. 2021(05): 61-68 .

    Other cited types(0)

Catalog

    Article views (359) PDF downloads (63) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return