Citation: | Liu Pan, Lu Mei, Lü Jinghua, Yang Zhidong, Zhao Dingrong, Sun Guanfa, Shan Shengyang, Li Cong, Zhao Xuyan, Chen Zhiming. Effects of ant colonization on carbon accumulation and distribution in the forests of neighbouring mountains in the Napahai Wetlands, Yunnan Province of southwestern China[J]. Journal of Beijing Forestry University, 2024, 46(5): 114-125. DOI: 10.12171/j.1000-1522.20220507 |
This study aimed to compare the storage of total organic carbon and the distribution of active organic carbon in ant nests and reference soils and to provide the key data support for expounding the impact of ant colonization on processes and mechanisms of carbon sequestration in forests of neighbouring mountains in the Napahai Wetlands, Yunnan Provinve of southwestern China.
We compared total organic carbon storage, active organic carbon components (i.e., total, microbial, easily oxidized, particulate, and dissolved organic carbon (total organic carbon, microbial biomass carbon, easily oxidized carbon, particulate organic carbon, and dissolved organic carbon), and their distributions (MBC/TOC, EOC/TOC, POC/TOC, DOC/TOC) in ant nests and the reference soils in the spruce-fir community of neighbouring mountains in the Napahai Wetlands. We also explored the ant-induced changes in soil physicochemical properties on organic carbon storage and active organic component distribution.
Ant colonization significantly affected SOC accumulation and carbon distribution (P < 0.05). Soil organic carbon storage was 5.7 times higher in ant nests than in reference soil; the concentrations of TOC, MBC, EOC, and POC in ant nests increased by 3.8, 2.7, 4.0, and 3.5 times, respectively. The average ratios of MBC/TOC, POC/TOC, and DOC/TOC in reference soils were 0.43%, 3.30% and 3.21% higher than that in the reference soils. In contrast, the ratio of EOC/TOC in ant nests was 1.50% higher than that in reference soil. The soil layer and treatment had interactive effects on concentrations of TOC, MBC, POC, and DOC (P < 0.05), while there was no significant interaction on EOC. The regression analysis showed that MBC, POC, DOC and EOC can explain 96.45%, 96.35%, 95.13% and 94.27% of the changes in total organic carbon. Principal component analysis showed that soil density, total nitrogen and available phosphorus were the main controlling factors of SOC storage, while available nitrogen and phosphorus, soil density were the main driving factors of active carbon accumulation, and total kalium was the main influencing factor for the distribution of particulate organic carbon and dissolved organic carbon.
Ant nesting mainly regulates the total organic carbon storage and distribution of active organic carbon components in the forest soil of neighbouring mountains in the Napahai Wetlands by changing environmental factors such as soil compaction and nitrogen and phosphorus nutrient conditions. These results would contribute to the understanding of fauna regulatory mechanisms for soil carbon sequestration in the forests of neighbouring mountains in the Napahai Wetlands.
[1] |
Chang E H, Chen T H, Tian G L, et al. The effect of altitudinal gradient on soil microbial community activity and structure in moso bamboo plantations[J]. Applied Soil Ecology, 2016, 98: 213−220. doi: 10.1016/j.apsoil.2015.10.018
|
[2] |
Parton W, Schimel D, Cole C, et al. Analysis of factors controlling soil organic matter levels in great plains grasslands[J]. Soil Science Society of America Journal-SSSAJ, 1987, 51(5): 1173−1179. doi: 10.2136/sssaj1987.03615995005100050015x
|
[3] |
杨文焕, 王铭浩, 李卫平, 等. 黄河湿地包头段不同地被类型对土壤有机碳的影响[J]. 生态环境学报, 2018, 27(6): 1034−1043.
Yang W H, Wang M H, Li W P, et al. Effects of land use types on soil organic carbon in the south China sea wetland[J]. Ecology and Environmental Sciences, 2018, 27(6): 1034−1043.
|
[4] |
Cao L, Song J, Wang Q, et al. Characterization of labile organic carbon in different coastal wetland soils of Laizhou Bay, Bohai sea[J]. Wetlands, 2016, 37(1): 163−175.
|
[5] |
陈平, 赵博, 杨璐, 等. 接种蚯蚓和添加凋落物对油松人工林土壤养分和微生物量及活性的影响[J]. 北京林业大学学报, 2018, 40(6): 63−71. doi: 10.13332/j.1000-1522.20180101
Chen P, Zhao B, Yang L, et al. Effects of earthworm and litter application on soil nutrients and soil microbial biomass and activities in Pinus tabuliformis plantation[J]. Journal of Beijing Forestry University, 2018, 40(6): 63−71. doi: 10.13332/j.1000-1522.20180101
|
[6] |
梁文举, 闻大中. 土壤生物及其对土壤生态学发展的影响[J]. 应用生态学报, 2001, 12(1): 137−140. doi: 10.3321/j.issn:1001-9332.2001.01.032
Liang W J, Wen D Z. Soil biota and its role in soil ecology[J]. Chinese Journal of Applied Ecology, 2001, 12(1): 137−140. doi: 10.3321/j.issn:1001-9332.2001.01.032
|
[7] |
刘满强, 陈小云, 郭菊花, 等. 土壤生物对土壤有机碳稳定性的影响[J]. 地球科学进展, 2007, 22(2): 152−158. doi: 10.3321/j.issn:1001-8166.2007.02.005
Liu M Q, Chen X Y, Guo J H, et al. Soil biota on soil organic carbon stabilization[J]. Advances in Earth Science, 2007, 22(2): 152−158. doi: 10.3321/j.issn:1001-8166.2007.02.005
|
[8] |
Folgarait P J, Perelman S, Gorosito N, et al. Effects of Camponotus punctulatus ants on plant community composition and soil properties across land-use histories[J]. Plant Ecology, 2002, 163(1): 1−13. doi: 10.1023/A:1020323813841
|
[9] |
Kilpeläinen J, Finér L, Niemelä P, et al. Carbon, nitrogen and phosphorus dynamics of ant mounds (Formica rufa group) in managed boreal forests of different successional stages[J]. Applied Soil Ecology, 2007, 36(2/3): 156−163.
|
[10] |
刘任涛, 赵哈林, 赵学勇. 科尔沁沙地流动沙丘掘穴蚁蚁丘分布及影响因素[J]. 应用生态学报, 2009, 20(2): 376−380.
Liu R T, Zhao H L, Zhao X Y. Distribution of Formica cunicularia mound and related affecting factors on mobile dune in Horqin Sandy Land[J]. Chinese Journal of Applied Ecology, 2009, 20(2): 376−380.
|
[11] |
马和平, 郭其强, 刘合满, 等. 西藏色季拉山西坡不同海拔梯度表层土壤碳氮变化特性的研究[J]. 林业科学研究, 2013, 26(2): 240−246. doi: 10.3969/j.issn.1001-1498.2013.02.017
Ma H P, Guo Q Q, Liu H M, et al. Changes of soil organic carbon and total nitrogen at different altitudes in west slope of Sejila Mountain of Tibet[J]. Forest Research, 2013, 26(2): 240−246. doi: 10.3969/j.issn.1001-1498.2013.02.017
|
[12] |
贺虹, 魏琮, 王云果, 等. 秦岭楼观台油松林地3种土栖性蚂蚁巢内真菌多样性研究[J]. 西北林学院学报, 2011, 26(2): 129−134.
He H, Wei Z, Wang Y G, et al. The ungal diversity in nests of three soil-nesting ant species (Hymenoptera: Formicidae) in pine f forests of Louguantai National Forest Park, China[J]. Journal of Northwest Forestry University, 2011, 26(2): 129−134.
|
[13] |
Duval M E, Galantini J A, Martínez J M, et al. Sensitivity of different soil quality indicators to assess sustainable land management: influence of site features and seasonality[J]. Soil and Tillage Research, 2016, 159: 9−22. doi: 10.1016/j.still.2016.01.004
|
[14] |
肖德荣, 田昆, 袁华, 等. 滇西北高原典型退化湿地纳帕海植物群落景观多样性[J]. 生态学杂志, 2007, 26(8): 1171−1176.
Xiao D R, Tian K, Yuan H, et al. Landscape diversity of Napahai Wetland plant community in Northwest Yunnan of China[J]. Chinese Journal of Ecology, 2007, 26(8): 1171−1176.
|
[15] |
徐正会, 杨比伦, 刘霞, 等. 西藏蚂蚁区系及物种多样性研究[J]. 西南林业大学学报, 2021, 41(1): 1−16.
Xu Z H, Yang B L, Liu X, et al. Ant fauna and species diversity of Tibet[J]. Journal of Southwest Forestry University, 2021, 41(1): 1−16.
|
[16] |
郭萧, 徐正会, 杨俊伍, 等. 滇西北云岭东坡蚂蚁物种多样性研究[J]. 林业科学研究, 2007, 20(5): 660−667. doi: 10.3321/j.issn:1001-1498.2007.05.012
Guo X, Xu Z H, Yang J W, et al. Ant species diversity on east slope of Yunling Mountain in northwestern Yunnan[J]. Forest Research, 2007, 20(5): 660−667. doi: 10.3321/j.issn:1001-1498.2007.05.012
|
[17] |
徐正会, 吴定敏, 陈志强, 等. 高黎贡山自然保护区东坡水平带蚂蚁群落研究[J]. 林业科学研究, 2001, 14(6): 603−609.
Xu Z H, Wu D M, Chen Z Q, et al. A study on the ant community of horizontal band on the east slope of the Gaoligong Mountain nature reserve[J]. Forest Research, 2001, 14(6): 603−609.
|
[18] |
陈超, 熊忠平, 徐正会, 等. 青藏高原东北坡蚂蚁物种的分布格局[J]. 林业科学研究, 2022, 35(3): 131−140.
Chen C, Xiong Z P, Xu Z H, et al. Distribution pattern of ant species on the northeast slope of Qinghai-Tibet Plateau[J]. Forest Research, 2022, 35(3): 131−140.
|
[19] |
尚文, 杨永兴. 滇西北高原纳帕海湖滨湿地退化特征、规律与过程[J]. 应用生态学报, 2012, 23(12): 3257−3265. doi: 10.13287/j.1001-9332.2012.0440
Shang W, Yang Y X. Degradation characteristics, patterns, and processes of lakeside wetland in Napahai of northwest Yunnan Plateau, Southwest China[J]. Chinese Journal of Applied Ecology, 2012, 23(12): 3257−3265. doi: 10.13287/j.1001-9332.2012.0440
|
[20] |
田昆. 云南纳帕海高原湿地土壤退化过程及驱动机制[D]. 长春: 中国科学院东北地理与农业生态研究所, 2004.
Tian K. Mechanism and process of soil degradation in Napahai wetland on Yunnan Plateau[D]. Changchun: Northeast Institute of Geography of Agroecology, Chinese Academy of Sciences, 2004.
|
[21] |
陆梅, 田昆, 赖建东, 等. 高原湿地纳帕海周边山地不同植被类型枯落物持水特性[J]. 水土保持通报, 2011, 31(1): 28−34, 52.
Lu M, Tian K, Lai J D, et al. Water holding characteristics of litters of different species in mountainous area of Napahai Plateau Wetland[J]. Bulletin of Soil and Water Conservation, 2011, 31(1): 28−34, 52.
|
[22] |
周晨霓, 马和平. 西藏色季拉山典型植被类型土壤活性有机碳分布特征[J]. 土壤学报, 2013, 50(6): 1246−1251.
Zhou C N, Ma H P. Distribution of labile organic carbon in soil as affected by vegetation typical of Sygera Mountains, Tibet, China[J]. Acta Pedologica Sinica, 2013, 50(6): 1246−1251.
|
[23] |
徐正会. 西双版纳自然保护区蚁科昆虫生物多样性研究[M]. 昆明: 云南科技出版社, 2002
Xu Z H. Biodiversity of ant insects in Xishuangbanna Nature Reserve, China[M]. Kunming: Yunnan Science and Technology Press, 2002.
|
[24] |
Ellert B H, Janzen H, Vandenbygaart B, et al. Measuring change in soil organic carbon storage[M]//Carter M R, Gregorich E G. Soil sampling and methods of analysis. New York: CRC Press, 2008: 25−38.
|
[25] |
鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000.
Lu R K. The analysis method of soil agricultural chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.
|
[26] |
张雪慧, 张仲胜, 武海涛. 蚂蚁扰动对土壤有机碳循环过程的影响研究进展[J]. 应用生态学报, 2020, 31(12): 4301−4311.
Zhang X H, Zhang Z S, Wu H T. Effects of ant disturbance on soil organic carbon cycle: a review[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4301−4311.
|
[27] |
Cammeraat E L H, Willott J, Compton S, et al. The effects of ants’ nests on the physical, chemical and hydrological properties of a rangeland soil in semi-arid Spain[J]. Geoderma, 2002, 105: 1−20. doi: 10.1016/S0016-7061(01)00085-4
|
[28] |
Frouz J, Holec M, Kalčík J. The effect of Lasius niger (Hymenoptera, Formicidae) ant nest on selected soil chemical properties[J]. Pedobiologia, 2003, 47(3): 205−212. doi: 10.1078/0031-4056-00184
|
[29] |
张哲, 王邵军, 陈闽昆, 等. 蚂蚁筑巢对不同恢复阶段热带森林土壤易氧化有机碳时空动态的影响[J]. 生物多样性, 2019, 27(6): 658−666. doi: 10.17520/biods.2019011
Zhang Z, Wang S J, Chen M K, et al. Effect of ant colonization on spatiotemporal dynamics of readily oxidizable soil carbon across different restoration stages of tropical forests[J]. Biodiversity Science, 2019, 27(6): 658−666. doi: 10.17520/biods.2019011
|
[30] |
陈闽昆, 王邵军, 陈武强, 等. 蚂蚁筑巢对西双版纳热带森林土壤微生物生物量碳及熵的影响[J]. 应用生态学报, 2019, 30(9): 2973−2982.
Chen M K, Wang S J, Chen W Q, et al. Effects of ant nesting on soil microbial biomass carbon and quotient in tropical forest of Xishuangbanna[J]. Chinese Journal of Applied Ecology, 2019, 30(9): 2973−2982.
|
[31] |
Qi H S, Zhao Y, Wang X, et al. Manganese dioxide driven the carbon and nitrogen transformation by activating the complementary effects of core bacteria in composting[J]. Bioresource Technology, 2021, 330: 124960. doi: 10.1016/j.biortech.2021.124960
|
[32] |
Sarcinelli T S, Schaefer C E G R, Fernandes F E I, et al. Soil modification by termites in a sandy-soil vegetation in the Brazilian Atlantic rainforest[J]. Journal of Tropical Ecology, 2013, 29(5): 439−448. doi: 10.1017/S0266467413000497
|
[33] |
陈建国, 田大伦, 闫文德, 等. 土壤团聚体固碳研究进展[J]. 中南林业科技大学学报, 2011, 31(5): 74−80.
Chen J G, Tian D L, Yan W D, et al. Progress on study of carbon sequestration in soil aggregates[J]. Journal of Central South University of Forestry & Technology, 2011, 31(5): 74−80.
|
[34] |
左倩倩, 王邵军, 王平, 等. 蚂蚁筑巢对西双版纳热带森林土壤有机氮矿化的影响[J]. 生态学报, 2021, 41(18): 7339−7347.
Zuo Q Q, Wang S J, Wang P, et al. Effect of ant colonization on soil organic nitrogen mineralization in the Xishuangbanna tropical forest[J]. Chinese Journal of Applied Ecology, 2021, 41(18): 7339−7347.
|
[35] |
Frouz J, Jilková J. The effect of ants on soil properties and processes (Hymenoptera: Formicidae)[J]. Myrmecological News, 2008, 11(11): 191−199.
|
[36] |
Seifert B, Schultz R. A taxonomic revision of the Palaearctic ant subgenus Coptoformica müller, 1923 (Hymenoptera, Formicidae)[J]. Contributions to Entomology, 2021, 71(2): 177−220. doi: 10.21248/contrib.entomol.71.2.177-220
|
[37] |
Domisch T, Ohashi M, Finér L, et al. Decomposition of organic matter and nutrient mineralisation in wood ant (Formica rufa group) mounds in boreal coniferous forests of different age[J]. Biology and Fertility of Soils, 2007, 44(3): 539−545.
|
[38] |
陈小花, 陈宗铸, 雷金睿, 等. 清澜港红树林湿地典型群落类型沉积物活性有机碳组分分布特征[J]. 生态学报, 2022, 42(11): 4572−4581.
Chen X H, Chen Z Z, Lei J R, et al. Distribution characteristics of active organic carbon components in sediments of typical community types of mangrove wetland in Qinglan Port[J]. Acta Ecologica Sinica, 2022, 42(11): 4572−4581.
|
[39] |
鱼小军, 蒲小鹏, 黄世杰, 等. 蚂蚁对东祁连山高寒草地生态系统的影响[J]. 草业学报, 2010, 19(2): 140−145.
Yu X J, Pu X P, Huang S J, et al. Effects of ants (Tetramorium sp.) on eastern Qilian Mountains alpine grassland ecosystem[J]. Acta Prataculturae Sinica, 2010, 19(2): 140−145.
|
[40] |
唐国勇, 黄道友, 童成立, 等. 红壤丘陵景观单元土壤有机碳和微生物生物量碳含量特征[J]. 应用生态学报, 2006, 17(3): 429−433.
Tang G Y, Huang D Y, Tong C L, et al. Characteristics of soil organic carbon and microbial biomass carbon in hilly red soil region[J]. Chinese Journal of Applied Ecology, 2006, 17(3): 429−433.
|
[41] |
张文敏, 吴明, 王蒙, 等. 杭州湾湿地不同植被类型下土壤有机碳及其组分分布特征[J]. 土壤学报, 2014, 51(06): 1351−1360.
Zhang W M, Wu M, Wang M, et al. Distribution characteristics of organic carbon and its components in soils under different types of vegetation in wetland of Hangzhou Bay[J]. Acta Pedologica Sinica, 2014, 51(6): 1351−1360.
|
[42] |
陈小花, 陈宗铸, 雷金睿, 等. 清澜港红树林湿地土壤酶活性与理化性质的关系[J]. 林业科学研究, 2022, 35(2): 171−179.
Chen X H, Chen Z Z, Lei J R, et al. Relationship between soil enzyme activities and physicochemical properties in mangrove wetland of Qinglan Port[J]. Forest Research, 2022, 35(2): 171−179.
|
[43] |
曹乾斌, 王邵军, 任玉连, 等. 蚂蚁筑巢对西双版纳热带森林土壤碳矿化动态的影响[J]. 应用生态学报, 2019, 30(12): 4231−4239.
Cao Q B, Wang S J, Ren Y L, et al. Effects of ant colonization on spatiotemporal variation of organic carbon mineralization in Xishuangbanna tropical forest soils[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4231−4239.
|
[44] |
车昭碧, 徐鹏飞, 郭亚亚, 等. 不同草地类型的北方蚁蚁巢及周围土壤理化性质特征分析[J]. 草地学报, 2021, 29(5): 982−990.
Che Z B, Xu P F, Guo Y Y, et al. Analysis of soil physical and chemical properties of Formica aquilonia yarrow nest and surrounding in different grassland types[J]. Acta Prataculturae Sinica, 2021, 29(5): 982−990.
|
[45] |
脱云飞, 沈方圆, 杨翠萍, 等. 滇中高原降雨对不同地类土壤磷素、有机质和pH变化的影响[J]. 生态环境学报, 2020, 29(5): 942−950.
Tuo Y F, Shen F Y, Yang C P, et al. Effects of rainfall on phosphorus, organic matter and pH in different land use types in middle Yunnan Plateau[J]. Ecology and Environment Science, 2020, 29(5): 942−950.
|
[46] |
郭志华, 张莉, 郭彦茹, 等. 海南清澜港红树林湿地土壤有机碳分布及其与pH的关系[J]. 林业科学, 2014, 50(10): 8−15.
Guo Z H, Zhang L, Guo Y R, et al. Soil carbon sequestration and its relationship with soil pH in Qinglangang Mangrove Wetlands in Hainan Island[J]. Scientia Silvae Sinicae, 2014, 50(10): 8−15.
|
[47] |
Wagner D, Jones J B, Gordon D M. Development of harvester ant colonies alters soil chemistry[J]. Soil Biology and Biochemistry, 2004, 36(5): 797−804. doi: 10.1016/j.soilbio.2004.01.009
|
[48] |
Wagner D, Jones J B. The impact of harvester ants on decomposition, N mineralization, litter quality, and the availability of N to plants in the Mojave Desert[J]. Soil Biology and Biochemistry, 2006, 38(9): 2593−2601. doi: 10.1016/j.soilbio.2006.02.024
|
[49] |
侯继华, 周道玮, 姜世成. 蚂蚁筑丘活动对松嫩草地植物群落多样性的影响[J]. 植物生态学报, 2002, 26(3): 323−329.
Hou J H, Zhou D W, Jiang S C. The effect of hill-building activities of ants on the species diversity of plant communities in Songnen grassland[J]. Chinese Journal of Plant Ecology, 2002, 26(3): 323−329.
|
[50] |
陈元瑶, 魏琮, 贺虹, 等. 秦岭地区2种蚂蚁巢内土壤理化性质和微生物量的相关性研究[J]. 西北林学院学报, 2012, 27(2): 121−126. doi: 10.3969/j.issn.1001-7461.2012.02.26
Chen Y Y, Wei Z, He H, et al. Correlation of physicochemical characteristics and microbial biomass among nest soil of Camponotus japonicus and Pachycondyla astute in Qinling Mountains[J]. Journal of Northwest Forestry University, 2012, 27(2): 121−126. doi: 10.3969/j.issn.1001-7461.2012.02.26
|
[51] |
Rawlins A J, Bull I D, Ineson P, et al. Stabilisation of soil organic matter in invertebrate faecal pellets through leaf litter grazing[J]. Soil Biology and Biochemistry, 2007, 39(5): 1202−1205. doi: 10.1016/j.soilbio.2006.10.010
|