• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Cancan, Wu Xiaogang, Liu Bin, Shi Xuewen, Chen Fusheng, Qiu Lihong, Bu Wensheng. Variations in soil organic carbon along an altitudinal gradient of Jiulian Mountain in Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 19-28. DOI: 10.13332/j.1000-1522.20180383
Citation: Zhang Cancan, Wu Xiaogang, Liu Bin, Shi Xuewen, Chen Fusheng, Qiu Lihong, Bu Wensheng. Variations in soil organic carbon along an altitudinal gradient of Jiulian Mountain in Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 19-28. DOI: 10.13332/j.1000-1522.20180383

Variations in soil organic carbon along an altitudinal gradient of Jiulian Mountain in Jiangxi Province of eastern China

More Information
  • Received Date: November 25, 2018
  • Revised Date: December 15, 2018
  • Published Date: January 31, 2019
  • ObjectiveSoil type, soil layer and stand type are considered as major factors affecting the distribution of soil organic carbon. Meanwhile, an altitudinal gradient is a redistribution of hydrothermal conditions at large-scale environments, and often involve the variations of soil and vegetation types at small scale. Therefore, there is an important significance for carbon sequestration management in forest ecosystem to explore the variations of soil organic carbon along an altitudinal gradient (179-1 430 m).
    MethodTwenty soil profiles distributed with five soil layers along an altitudinal gradient in Jiulian Moutain were sampled. Moreover, vegetation type, soil type, soil organic carbon content and soil carbon storage were recorded for these soil samples to explore the vertical distribution and influencing factor of soil organic carbon along an altitudinal gradient.
    ResultThe organic carbon content of top three soil layers (0-40 cm) increased linearly with the increase of elevation, whereas that of the bottom two layers (40-60 cm and 60-100 cm) decreased linearly with the increase of elevation. The pattern of soil carbon storage with elevations was similar with that of soil organic carbon content. However, there was a "U" shape between total soil carbon storage and elevation; Soil organic carbon content and carbon storage of top three soil layers in meadow soil were generally higher than those in red soil or yellow soil, the organic carbon content and carbon storage of top soil layer (0-20 cm) increased with the altitudinal gradient from red soil, yellow soil to meadow soil, meanwhile there was no significant difference among other layers. Soil organic carbon content and carbon storage of top three soil layers for Rhododendron woods and alpine meadow in high elevation were generally higher than those for the other vegetation types in low elevation, and there was the highest total carbon storage with 0-100 cm in alpine meadow and secondary broadleaved forest.
    ConclusionThese results indicate that variations of top soil layer and vegetation types are the major factors to drive the variations of soil organic carbon along an altitudinal gradient in Jiulian Mountain of eastern China. The carbon emission of top soil layers in high elevation may increase with the increase of air temperature under the global warming.
  • [1]
    Sakschewski B, Von Bloh W, Boit A, et al. Resilience of Amazon forests emerges from plant trait diversity[J]. Nature Climate Change, 2016, 6(11): 1032-1036. doi: 10.1038/nclimate3109
    [2]
    Jackson R B, Lajtha K, Crow S E, et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls[J]. Annual Review of Ecology, Evolution, and Systematics, 2017, 48:419-445. doi: 10.1146/annurev-ecolsys-112414-054234
    [3]
    Lal R. Soil carbon sequestration to mitigate climate change[J]. Geoderma, 2004, 123:1-22. doi: 10.1016/j.geoderma.2004.01.032
    [4]
    Purton K, Dan P, Leinweber P, et al. Will changes in climate and land use affect soil organic matter composition? Evidence from an ecotonal climosequence[J]. Geoderma, 2015, 253-254:48-60. doi: 10.1016/j.geoderma.2015.04.007
    [5]
    Melillo J M, Frey S D, Deangelis K M, et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world[J]. Science, 2017, 358:101-105. doi: 10.1126/science.aan2874
    [6]
    Jmo S, Hall D O. The global carbon sink: a grassland perspective[J]. Global Change Biology, 2010, 4(2):229-233. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b6c9852e7a49e5082b1a237adc936ee0
    [7]
    张仲胜, 李敏, 宋晓林, 等.气候变化对土壤有机碳库分子结构特征与稳定性影响研究进展[J].土壤学报, 2018, 55(2):273-282. http://d.old.wanfangdata.com.cn/Periodical/trxb201802002

    Zhang Z S, Li M, Song X L, et al. Effects of climate change on molecular structure and stability of soil carbon pool: a general review[J]. Acta Pedologica Sinica, 2018, 55(2):273-282. http://d.old.wanfangdata.com.cn/Periodical/trxb201802002
    [8]
    胡慧蓉, 马焕成, 罗承德, 等.森林土壤有机碳分组及其测定方法[J].土壤通报, 2010, 41(4):1018-1024. http://d.old.wanfangdata.com.cn/Periodical/trtb201004049

    Hu H R, Ma H C, Luo C D, et al. Forest soil organic carbon fraction and its measure methods[J]. Chinese Journal of Soil Science, 2010, 41(4):1018-1024. http://d.old.wanfangdata.com.cn/Periodical/trtb201004049
    [9]
    魏孝荣, 邵明安, 高建伦.黄土高原沟壑区小流域土壤有机碳与环境因素的关系[J].环境科学, 2008, 29(10):2879-2884. doi: 10.3321/j.issn:0250-3301.2008.10.034

    Wei X R, Shao M A, Gao J L. Relationships between soil organic carbon and environmental factors in gully watershed of the Loess Plateau[J]. Environmental Science, 2008, 29(10):2879-2884. doi: 10.3321/j.issn:0250-3301.2008.10.034
    [10]
    王岩松, 李梦迪, 朱连奇.土壤有机碳库及其影响因素的研究进展[J].中国农学通报, 2015, 31(32):123-131. doi: 10.11924/j.issn.1000-6850.casb15060134

    Wang Y S, Li M D, Zhu L Q. Research process of soil organic carbon storage and its influencing factors[J]. Chinese Agricultural Science Bulletin, 2015, 31(32):123-131. doi: 10.11924/j.issn.1000-6850.casb15060134
    [11]
    王晶, 何忠俊, 王立东, 等.高黎贡山土壤腐殖质特性与团聚体数量特征研究[J].土壤学报, 2010, 47(4):723-733. http://d.old.wanfangdata.com.cn/Periodical/trxb201004019

    Wang J, He Z J, Wang L D, et al. Properties of humus and content of soil aggregates in soil on Gaoligong Mountain[J]. Acta Pedologica Sinica, 2010, 47(4):723-733. http://d.old.wanfangdata.com.cn/Periodical/trxb201004019
    [12]
    Batjes N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 2014, 47: 151-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a31f8d98465acccbf7a8232d9809dc2a
    [13]
    Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10(2):423-436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
    [14]
    毕珍, 石辉, 许五弟, 等.四川盆地森林土壤的有机碳储量及其空间分布特征[J].水土保持研究, 2009, 16(5):83-87. http://d.old.wanfangdata.com.cn/Periodical/stbcyj200905017

    Bi Z, Shi H, Xu W D, et al. Forest soil organic carbon storage and characteristics of spatial distribution in Sichuan Basin[J]. Research of Soil and Water Conservation, 2009, 16(5):83-87. http://d.old.wanfangdata.com.cn/Periodical/stbcyj200905017
    [15]
    刘亚兰, 郭汝清, 孙书存.中国亚热带山地植被垂直带分布对气候季节性的响应[J].生态学报, 2010, 30(14):3912-3922. http://d.old.wanfangdata.com.cn/Periodical/stxb201014029

    Liu Y L, Guo R Q, Sun S C. Variations in the vertical vegetation zonation of subtropical Chinese mountains: the importance of climatic seasonality[J]. Acta Ecologica Sinica, 2010, 30(14):3912-3922. http://d.old.wanfangdata.com.cn/Periodical/stxb201014029
    [16]
    周广胜, 张新时.全球变化的中国气候-植被分类研究[J].植物学报, 1996, 38(1):8-17. doi: 10.3321/j.issn:1000-4025.1996.01.002

    Zhou G S, Zhang X S. Study on climate-vegetation classification for global change in China[J]. Acta Botanica Sinica, 1996, 38(1):8-17. doi: 10.3321/j.issn:1000-4025.1996.01.002
    [17]
    吴雅琼, 刘国华, 傅伯杰, 等.森林生态系统土壤CO2释放随海拔梯度的变化及其影响因子[J].生态学报, 2007, 27(11):4678-4685. doi: 10.3321/j.issn:1000-0933.2007.11.036

    Wu Y Q, Liu G H, Fu B J, et al. Soil CO2 emission distribution along an elevation gradient and the controlling factors in the forest ecosystem[J]. Acta Ecologica Sinica, 2007, 27(11):4678-4685. doi: 10.3321/j.issn:1000-0933.2007.11.036
    [18]
    吴建国, 艾丽, 田自强, 等.祁连山中部土壤颗粒组分有机质碳含量及其与海拔和植被的关系[J].生态环境学报, 2008, 17(6):2358-2365. doi: 10.3969/j.issn.1674-5906.2008.06.047

    Wu J G, Ai L, Tian Z Q, et al. The soil particulate organic carbon in different elevation and its relationship with vegetation in Qilian Mountain[J]. Ecology and Environment, 2008, 17(6):2358-2365. doi: 10.3969/j.issn.1674-5906.2008.06.047
    [19]
    刘迎春, 于贵瑞, 王秋凤, 等.基于成熟林生物量整合分析中国森林碳容量和固碳潜力[J].中国科学:生命科学, 2015, 45(2): 210-222 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cc201502011

    Liu Y C, Yu G R, Wang Q F, et al. Carbon carry capacity and carbon sequestration potential in China based on an integrated analysis of mature forest biomass[J]. Scientia Sinica Vitae, 2015, 45(2): 1218-1229. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cc201502011
    [20]
    邸月宝, 王辉民, 马泽清, 等.亚热带森林生态系统不同重建方式下碳储量及其分配格局[J].科学通报, 2012, 57(17):1553-1561. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201217006

    Di Y B, Wang H M, Ma Z Q, et al. Carbon storage and its allocation pattern of forest ecosystems with different restoration methods in subtropical China[J]. Chinese Science Bulletin, 2012, 57(17):1553-1561. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201217006
    [21]
    杜有新, 吴从建, 周赛霞, 等.庐山不同海拔森林土壤有机碳密度及分布特征[J].应用生态学报, 2011, 22(7):1675-1681. http://d.old.wanfangdata.com.cn/Periodical/yystxb201107003

    Du Y X, Wu C J, Zhou S X, et al. Forest soil organic carbon density and its distribution characteristics along an altitudinal gradient in Lushan Moutain of China[J]. Chinese Journal of Applied Ecology, 2011, 22(7):1675-1681. http://d.old.wanfangdata.com.cn/Periodical/yystxb201107003
    [22]
    柯娴氡, 张璐, 苏志尧.粤北亚热带山地森林土壤有机碳沿海拔梯度的变化[J].生态与农村环境学报, 2012, 28(2):151-156. doi: 10.3969/j.issn.1673-4831.2012.02.007

    Ke X D, Zhang L, Su Z Y. Variation of soil organic carbon content along altitudinal gradient in subtropical montane forest in North Guangdong[J]. Journal of Ecology and Rural Environment, 2012, 28(2):151-156. doi: 10.3969/j.issn.1673-4831.2012.02.007
    [23]
    程浩, 张厚喜, 黄智军, 等.武夷山不同海拔高度土壤有机碳含量变化特征[J].森林与环境学报, 2018, 38(2): 1-8. http://d.old.wanfangdata.com.cn/Periodical/fjlxyxb201802002

    Cheng H, Zhang H X, Huang Z J, et al. Variations of soil organic carbon content along an altitudinal gradient in Wuyi Mountain[J]. Journal of Forest and Environment, 2018, 38(2): 1-8. http://d.old.wanfangdata.com.cn/Periodical/fjlxyxb201802002
    [24]
    Townsend A R, Vitousek P M, Trumbore S E. Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii[J]. Ecology, 1995, 76(3):721-733. doi: 10.2307/1939339
    [25]
    韩广轩, 周广胜.土壤呼吸作用时空动态变化及其影响机制研究与展望[J].植物生态学报, 2009, 33(1):197-205. doi: 10.3773/j.issn.1005-264x.2009.01.022

    Han G X, Zhou G S. Review of spatial and temporal variations of soil respiration and driving mechanism[J]. Chinese Journal of Plant Ecology, 2009, 33(1):197-205. doi: 10.3773/j.issn.1005-264x.2009.01.022
    [26]
    Asner N G P. Dissolved organic carbon in terrestrial ecosystems: synthesis and a model[J]. Ecosystems, 2001, 4(1):29-48. doi: 10.1007/s100210000058
    [27]
    丁虎, 郎赟超, 刘丛强.土壤碳淋溶流失研究进展[J].地球与环境, 2016, 44(1):139-146. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201601019

    Ding H, Lang Y C, Liu C Q. Advances in study on leaching loss of carbon from soil[J]. Earth and Environment, 2016, 44(1):139-146. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201601019
    [28]
    杨元根, 刘丛强, 袁可能, 等.南方红土形成过程及其稀土元素地球化学[J].第四纪研究, 2000, 20(5):469-480. doi: 10.3321/j.issn:1001-7410.2000.05.008

    Yang Y G, Liu C Q, Yuan K N, et al. Laterite formation process in southern China and its rare earth element (REE) geochemistry[J]. Quaternary Sciences, 2000, 20(5):469-480. doi: 10.3321/j.issn:1001-7410.2000.05.008
    [29]
    徐秋芳, 姜培坤, 沈泉.灌木林与阔叶林土壤有机碳库的比较研究[J].北京林业大学学报, 2005, 27(2):18-22. http://j.bjfu.edu.cn/article/id/9294

    Xu Q F, Jiang P K, Shen Q. Comparison of organic carbon pool of soil in bush and broad-leaved forests[J]. Journal of Beijing Forestry University, 2005, 27(2):18-22. http://j.bjfu.edu.cn/article/id/9294
    [30]
    张鹏, 张涛, 陈年来.祁连山北麓山体垂直带土壤碳氮分布特征及影响因素[J].应用生态学报, 2009, 20(3):518-524. http://d.old.wanfangdata.com.cn/Periodical/yystxb200903006

    Zhang P, Zhang T, Chen N L. Vertical distribution patterns of soil organic carbon and total nitrogen and related affecting factors along northern slope of Qilian Mountains[J]. Chinese Journal of Applied Ecology, 2009, 20(3):518-524. http://d.old.wanfangdata.com.cn/Periodical/yystxb200903006
    [31]
    向慧敏, 温达志, 张玲玲, 等.鼎湖山森林土壤活性碳及惰性碳沿海拔梯度的变化[J].生态学报, 2015, 35(18):6089-6099. http://d.old.wanfangdata.com.cn/Periodical/stxb201518020

    Xiang H M, Wen D Z, Zhang L L, et al. Altitudinal changes in active and recalcitrant soil carbon pools of forests in the Dinghu Mountains[J]. Acta Ecologica Sinica, 2015, 35(18):6089-6099. http://d.old.wanfangdata.com.cn/Periodical/stxb201518020
    [32]
    郭鑫, 吴鹏, 韩威, 等.演替和气候对阔叶红松林土壤有机碳密度的影响[J].北京林业大学学报, 2016, 38(7):55-63. doi: 10.13332/j.1000-1522.20160060

    Guo X, Wu P, Han W, et al. The influence of succession stages and climate on soil organic carbon density of broad-leaved Korean pine forest[J]. Journal of Beijing Forestry University, 2016, 38(7):55-63. doi: 10.13332/j.1000-1522.20160060
    [33]
    吕超群, 孙书存.陆地生态系统碳密度格局研究概述[J].植物生态学报, 2004, 28(5):692-703. doi: 10.3321/j.issn:1005-264X.2004.05.016

    Lü C Q, Sun S C. A review on the distribution patterns of carbon density in terrestrial ecosystem[J]. Chinese Journal of Plant Ecology, 2004, 28(5):692-703. doi: 10.3321/j.issn:1005-264X.2004.05.016
    [34]
    王清奎, 汪思龙, 冯宗炜.杉木纯林与常绿阔叶林土壤活性有机碳库的比较[J].北京林业大学学报, 2006, 28(5):1-6. doi: 10.3321/j.issn:1000-1522.2006.05.001

    Wang Q K, Wang S L, Feng Z W. Comparison of active soil organic carbon pool between Chinese fir plantations and evergreen broadleaved forests[J]. Journal of Beijing Forestry University, 2006, 28(5):1-6. doi: 10.3321/j.issn:1000-1522.2006.05.001
    [35]
    聂阳意, 王海华, 金昌善, 等.武夷山低海拔和高海拔森林土壤有机碳的矿化特征[J].应用生态学报, 2018, 29(3):748-756. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201803008.htm

    Nie Y Y, Wang H H, Jin C S, et al. Characteristics of soil organic carbon mineralization in low altitude and high altitude forests in Wuyi Mountains, southeastern China[J]. Chinese Journal of Applied Ecology, 2018, 29(3):748-756. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201803008.htm
  • Related Articles

    [1]Liu Xiaojing, Wen Xin, Zhao Rui, Chen Shaoliang, Zhao Nan, Li Jinke, Zhou Xiaoyang, Yao Jun. Overexpression of Populus euphratica PeCSP1 negatively regulating salt tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2023, 45(7): 9-17. DOI: 10.12171/j.1000-1522.20220020
    [2]Wu Xia, Zhang Yinan, Zhao Nan, Zhang Ying, Zhao Rui, Li Jinke, Zhou Xiaoyang, Chen Shaoliang. Overexpression of PeAnn1 from Populus euphratica negatively regulates drought resistance in transgenic Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2020, 42(6): 14-25. DOI: 10.12171/j.1000-1522.20200031
    [3]Li Pingping, Zeng Ming, Li Wenhai, Zhao Yuanyuan, Zheng Caixia. Comparative study on antioxidant capacity of heteromorphic leaves of Populus euphratica[J]. Journal of Beijing Forestry University, 2019, 41(8): 76-83. DOI: 10.13332/j.1000-1522.20190134
    [4]DENG Jia-yin, ZHANG Yan-li, ZHANG Yi-nan, ZHAO Rui, LI Jin-ke, ZHOU Xiao-yang, LIU Xiang-fen, CHEN Shao-liang. PeAPY1 and PeAPY2 of Populus euphratica regulating salt tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2017, 39(6): 13-21. DOI: 10.13332/j.1000-1522.20170034
    [5]WANG Shao-jie, ZHAO Nan, SHEN Ze-dan, SA Gang, SUN Hui-min, ZHAO Rui, SHEN Xin, CHEN Shao-liang. Mediation of NO on Cd2+ uptake in Populus euphratica cells under cadmium stress[J]. Journal of Beijing Forestry University, 2015, 37(6): 11-16. DOI: 10.13332/j.1000-1522.20150023
    [6]ZHANG Xiao-fei, LU Xin, DUAN Hui, LIAN Cong-long, XIA Xin-li, YIN Wei-lun. Cloning and functional analysis of PeNAC045 from Populus euphratica[J]. Journal of Beijing Forestry University, 2015, 37(6): 1-10. DOI: 10.13332/j.1000-1522.20150066
    [7]BAI Xue, ZHANG Shu-jing, ZHENG Cai-xia, HAO Jian-qing, LI Wen-hai, YANG Yang. Comparative study on photosynthesis and water physiology of polymorphic leaves of Populus euphratica[J]. Journal of Beijing Forestry University, 2011, 33(6): 47-52.
    [8]MA Hong-shuang, XIA Xin-li, YIN Wei-lun. Cloning and analysis of SCL7 gene from Populus euphratica[J]. Journal of Beijing Forestry University, 2011, 33(1): 1-10.
    [9]ZHANG Zheng-hai, , KANG Xiang-yang, LIU Ming-hu, DUAN Wu-la. Organization of microtubule during microsporogenesis in Populus simonii × P. euphratica.[J]. Journal of Beijing Forestry University, 2008, 30(6): 36-40.
    [10]LI Li, ZHOU Yan, GAO Shu-min, WANG Ying, LIU Yan. Protein vacuoles in the egg cells of Pinus tabulaeformis Carr.and specific proteins relating to the development of egg cells[J]. Journal of Beijing Forestry University, 2007, 29(5): 57-61. DOI: 10.13332/j.1000-1522.2007.05.011
  • Cited by

    Periodical cited type(7)

    1. 钟思琪,宁金魁,黄锦程,陈鼎泸,欧阳勋志,臧颢. 基于混合效应的杉木人工林冠幅模型. 森林与环境学报. 2024(02): 127-135 .
    2. 张晓姗,高嘉,王洪永,王霞,庞薇,陈寅,杜振宇,马风云,马丙尧. 我国栎树引种及其营养生长研究进展. 江苏林业科技. 2024(02): 48-52 .
    3. 邓坦,李文博,张向阳,王新建. 河南省栎类经营技术研究与建议. 河南林业科技. 2023(01): 1-5+30 .
    4. 廖科,刘振华,童方平,陈瑞,吴敏,蒋龙,龚发武,李贵. 不同混交比例对栎类混交林生长和土壤养分的影响. 中南林业科技大学学报. 2023(09): 80-88 .
    5. 娄明华,杨同辉,王卫兵,毛建方,徐婧,章建红. 四明山黄山松针阔混交林的树高—胸径模型. 林业与环境科学. 2023(05): 7-14 .
    6. 娄明华,白超,杨同辉. 宁波石栎-木荷天然常绿阔叶混交林的树高-胸径模型. 林业与环境科学. 2021(04): 46-54 .
    7. 娄明华,杨同辉,陈文伟,许俊. 宁波天然甜槠阔叶混交林树高—胸径模型研究. 防护林科技. 2021(05): 1-5 .

    Other cited types(4)

Catalog

    Article views (1814) PDF downloads (74) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return