• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Ding Mengdong, Wei Xueda, Wang Yu, Zhu Xuli. Using system mapping to analyze genetic regulation mechanism of neighboring plant interaction in Populus szechuanica var. tibetica[J]. Journal of Beijing Forestry University, 2024, 46(10): 63-73. DOI: 10.12171/j.1000-1522.20220519
Citation: Ding Mengdong, Wei Xueda, Wang Yu, Zhu Xuli. Using system mapping to analyze genetic regulation mechanism of neighboring plant interaction in Populus szechuanica var. tibetica[J]. Journal of Beijing Forestry University, 2024, 46(10): 63-73. DOI: 10.12171/j.1000-1522.20220519

Using system mapping to analyze genetic regulation mechanism of neighboring plant interaction in Populus szechuanica var. tibetica

More Information
  • Received Date: December 25, 2022
  • Revised Date: May 07, 2023
  • Accepted Date: October 07, 2024
  • Available Online: October 17, 2024
  • Objective 

    The interactions between plants are of great significance to the formation of ecosystems. This study investigated the genetic regulatory mechanisms of plant interactions at the level of neighboring plant interactions, the smallest unit of intraspecific interactions.

    Method 

    Using the natural population of Populus szechuanica var. tibetica as research material, different series numbers were randomly paired and cuttings were planted in pots to investigate the growth dynamic phenotypes of plant height throughout the growing season. Combining SNP marker data from the population, system mapping was performed to locate significant QTLs. GO enrichment analysis and construction of ordinary differential interaction networks were used to analyze the functions of candidate genes.

    Result 

    (1) A total of 92 significant loci were mapped, annotating 31 candidate genes. (2) In GO enrichment analysis, biological processes included auxin signaling pathways and abscisic acid signaling pathways, molecular functions included endopeptidase activity and protease activity, and cellular components included respiratory chains and cytochromes. (3) Among the 31 candidate genes, genes 5, 8, 10, 12 and 21 were hub genes in the direct effect network, genes 5, 8, 10 and 13 were hub genes in the indirect effect network, and genes 5, 8 and 13 were hub genes in the epistatic interaction network, with genes 5, 10 and 13 involved in plant immune response and environmental stress response.

    Conclusion 

    For neighboring interactions among P. szechuanica var. tibetica, system mapping can screen for interaction-related genetic loci, construct genetic regulatory networks, and mine hub genes, providing a new perspective for analyzing the genetic mechanisms of woody plant interactions.

  • [1]
    Gundel P E, Pierik R, Mommer L, et al. Competing neighbors: light perception and root function[J]. Oecologia, 2014, 176(1): 1−10. doi: 10.1007/s00442-014-2983-x
    [2]
    Bascompte J. Structure and dynamics of ecological networks[J]. Science, 2010, 329: 765−766. doi: 10.1126/science.1194255
    [3]
    Goldberg D E, Barton A M. Patterns and consequences of interspecific competition in natural communities: a review of field experiments with plants[J]. The American Naturalist, 1991, 139: 771−801.
    [4]
    Subrahmaniam H J, Libourel C, Journet E, et al. The genetics underlying natural variation of plant-plant interactions, a beloved but forgotten member of the family of biotic interactions[J]. The Plant Journal, 2018, 93(4): 747−770. doi: 10.1111/tpj.13799
    [5]
    Keddy P A, Cahill J. Competition in plant communities[J]. Ecology, 2012.110−115.
    [6]
    Chaney L, Baucom R S. The costs and benefits of tolerance to competition in Ipomoea purpurea, the common morning glory[J]. Evolution, 2014, 68(6): 1698−1709. doi: 10.1111/evo.12383
    [7]
    Wendling M, Büchi L, Amossé C, et al. Specific interactions leading to transgressive overyielding in cover crop mixtures[J]. Agriculture, Ecosystems & Environment, 2017, 241: 88−99.
    [8]
    杨文亭, 王晓维, 王建武. 豆科–禾本科间作系统中作物和土壤氮素相关研究进展[J]. 生态学杂志, 2013, 32(9): 2480−2484.

    Yang W T, Wang X W, Wang J W. Crop and soil nitrogen in legume-Gramineae intercropping system: research progress[J]. Chinese Journal of Ecology, 2013, 32(9): 2480−2484.
    [9]
    Bailey J K. From genes to ecosystems: a genetic basis to ecosystem services[J]. Population Ecology, 2011, 53(1): 47−52. doi: 10.1007/s10144-010-0251-4
    [10]
    Ehlers B K, Damgaard C F, Laroche F. Intraspecific genetic variation and species coexistence in plant communities[J]. Biology Letters, 2016, 12(1): 20150853. doi: 10.1098/rsbl.2015.0853
    [11]
    Brooker R W. Plant-plant interactions and environmental change[J]. New Phytologist, 2006, 171(2): 271−284. doi: 10.1111/j.1469-8137.2006.01752.x
    [12]
    Hughes A R, Inouye B D, Johnson M T J, et al. Ecological consequences of genetic diversity[J]. Ecology Letters, 2008, 11(6): 609−623. doi: 10.1111/j.1461-0248.2008.01179.x
    [13]
    Becker C, Berthome R, Delavault P, et al. The ecologically relevant genetics of plant-plant interactions[J]. Trends in Plant Sciences, 2023, 28(1): 31−42. doi: 10.1016/j.tplants.2022.08.014
    [14]
    Wade M J. The co-evolutionary genetics of ecological communities[J]. Nature Reviews Genetics, 2007, 8(3): 185−195. doi: 10.1038/nrg2031
    [15]
    Sun L, Wu R. Mapping complex traits as a dynamic system[J]. Physics of Life Reviews, 2015, 13: 155−185. doi: 10.1016/j.plrev.2015.02.007
    [16]
    Fu L, Sun L, Hao H, et al. How trees allocate carbon for optimal growth: insight from a game-theoretic model[J]. Briefings in Bioinformatics, 2018, 19(4): 593−602. doi: 10.1093/bib/bbx003
    [17]
    Cao X, Dong A, Kang G, et al. Modeling spatial interaction networks of the gut microbiota[J/OL]. Gut Microbes, 2022, 14(1): 2106103.
    [18]
    Ye M, Zhu X, Gao P, et al. Identification of quantitative trait loci for altitude adaptation of tree leaf shape with Populus szechuanica in the Qinghai-Tibetan Plateau[J]. Frontiers in Plant Science, 2020, 11: 632. doi: 10.3389/fpls.2020.00632
    [19]
    沈登锋, 薄文浩, 徐放, 等. 色季拉山不同海拔高度的藏川杨种群遗传多样性研究[J]. 植物遗传资源学报, 2014, 15(4): 692−698.

    Shen D F, Bo W H, Xu F, et al. Study on genetic diversity among populations in Populus szechuanica var. tibetica at different altitudes in Sejila Mountain[J]. Journal of Plant Genetic Resources, 2014, 15(4): 692−698.
    [20]
    郑晨飞. 藏川杨异形叶全基因组关联分析[D]. 北京: 北京林业大学, 2020.

    Zheng C F. Genome-wide association analysis of heterophylly for the tibet poplar, Populus szechuanica var. tibetica[D]. Beijing: Beijing Forestry University, 2020.
    [21]
    Arditi R, Ginzburg L R. Coupling in predator-prey dynamics: ratio-dependence[J]. Journal of Theoretical Biology, 1989, 139(3): 311−326. doi: 10.1016/S0022-5193(89)80211-5
    [22]
    Fu G, Wang Z, Li J, et al. A mathematical framework for functional mapping of complex phenotypes using delay differential equations[J]. Journal of Theoretical Biology, 2011, 289: 206−216. doi: 10.1016/j.jtbi.2011.08.002
    [23]
    Zhao W, Chen Y Q, Casella G, et al. A non-stationary model for functional mapping of complex traits[J]. Bioinformatics, 2005, 21(10): 2469−2477. doi: 10.1093/bioinformatics/bti382
    [24]
    Hart S P, Schreiber S J, Levine J M. How variation between individuals affects species coexistence[J]. Ecology Letters, 2016, 19(8): 825−838. doi: 10.1111/ele.12618
    [25]
    Chen C, Jiang L, Fu G, et al. An omnidirectional visualization model of personalized gene regulatory networks[J]. NPJ Systems Biology and Applications, 2019, 5(1): 1−11.
    [26]
    Humphrey L D, Pyke D A. Demographic and growth responses of a guerrilla and a phalanx perennial grass in competitive mixtures[J]. Journal of Ecology, 1998, 86(5): 854−865. doi: 10.1046/j.1365-2745.1998.8650854.x
    [27]
    解婷婷, 单立山, 苏培玺. 不同施氮量下干旱胁迫对棉花生长及种内关系的影响[J]. 中国生态农业学报, 2020, 28(5): 643−651.

    Xie T T, Shan L S, Su P X. Effects of drought stress on cotton growth and intraspecific relationship under different nitrogen application rates[J]. Chinese Journal of Eco-Agriculture, 2020, 28(5): 643−651.
    [28]
    杨雪芳. 化感水稻对邻近植物的生物化学响应及其化感物质衍生物的抑草机制[D]. 北京: 中国农业大学, 2017.

    Yang X F. Biological and chemical responses of allelopathic rice toneighboring plants and the weed-suppressive mechanisms of riceallelochemical derivatives[D]. Beijing: China Agricultural University, 2017.
    [29]
    Rasmann S. As above so below: recent and future advances in plant-mediated above-and belowground interactions[J]. American Journal of Botany, 2022, 109(5): 672−675. doi: 10.1002/ajb2.1845
    [30]
    Wu R, Cao J, Huang Z, et al. Systems mapping: how to improve the genetic mapping of complex traits through design principles of biological systems[J]. BMC Systems Biology, 2011, 5(1): 1−11. doi: 10.1186/1752-0509-5-1
    [31]
    Emenecker R J, Strader L C. Auxin-abscisic acid interactions in plant growth and development[J]. Biomolecules, 2020, 10(2): 281. doi: 10.3390/biom10020281
    [32]
    Popko J, Hansch R, Mendel R R, et al. The role of abscisic acid and auxin in the response of poplar to abiotic stress[J]. Plant Biology, 2010, 12(2): 242−258. doi: 10.1111/j.1438-8677.2009.00305.x
    [33]
    Delory B M, Delaplace P, Fauconnier M, et al. Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions?[J]. Plant and Soil, 2016, 402(1−2): 1−26. doi: 10.1007/s11104-016-2823-3
    [34]
    王艳萍, 范宇浍, 马华燕, 等. 外源脱落酸对水稻苗期根系形态建成及其诱导化感作用的影响[J]. 应用与环境生物学报, 2024, 30(1): 126−132.

    Wang Y P, Fan Y H, Ma H Y, et al. Effects of exogenous abscisic acid on root morphogenesis and induced allelopathy of rice at seedling stage[J]. Chinese Journal of Applied and Environmental Biology, 2024, 30(1): 126−132.
    [35]
    Yao X, Xiong W, Ye T, et al. Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis[J]. Journal of Experimental Botany, 2012, 63(7): 2579−2593. doi: 10.1093/jxb/err433
    [36]
    Li G, Liu K, Baldwin S A, et al. Equilibrative nucleoside transporters of Arabidopsis thaliana: cDNA cloning, expression pattern, and analysis of transport activities[J]. Journal of Biological Chemistry, 2003, 278(37): 35732−35742. doi: 10.1074/jbc.M304768200
    [37]
    Kim M, Lim J, Ahn C S, et al. Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana[J]. The Plant Cell, 2006, 18(9): 2341−2355. doi: 10.1105/tpc.106.041509
    [38]
    Wang F, Jing Y, Wang Z, et al. Arabidopsis profilin isoforms, PRF1 and PRF2 show distinctive binding activities and subcellular distributions[J]. Journal of Integrative Plant Biology, 2009, 51(2): 113−121. doi: 10.1111/j.1744-7909.2008.00781.x
    [39]
    Choi K, Khan R, Lee S. Dissection of plant microbiota and plant-microbiome interactions[J]. Journal of Microbiology, 2021, 59(3): 281−291. doi: 10.1007/s12275-021-0619-5
    [40]
    Mine A. Multifaceted involvement of abscisic acid in plant interactions with pathogenic and mutualistic microbes[J]. Advances in Botanical Research, 2019, 92: 219−253.
  • Related Articles

    [1]Qi Wanxin, Chen Tingting, Song Jiali, An Xinmin. Creating a new germplasm of aneuploid Populus tomentosa with insect-resistance based on hybridization of transgenic 741 poplar and P. alba var. pyramidalis[J]. Journal of Beijing Forestry University, 2024, 46(12): 92-102. DOI: 10.12171/j.1000-1522.20240021
    [2]Xu Xinghua, Huang Qilun, Li Shanwen, Meng Xianwei, Li Zongtai, Qiao Yanhui, Dong Yufeng, Zhang Zhiyi. Creation and comprehensive evaluation of Populus deltoides germplasm resources[J]. Journal of Beijing Forestry University, 2024, 46(8): 79-86. DOI: 10.12171/j.1000-1522.20220101
    [3]Wei Xueda, Wang Yu, Ding Mengdong, Wu Shuang, Liang Dan, Ye Meixia, Wu Rongling. Using allometric model and game theory to analyze the genetic regulation mechanism of dynamic growth of Populus tibetica trunk[J]. Journal of Beijing Forestry University, 2024, 46(6): 154-164. DOI: 10.12171/j.1000-1522.20220414
    [4]Xu Jiahong, Zeng Qing, Ye Fuyu, Hu Yangyang, Shi Huanyu, Zhang Xuan, Chen Jinhui. Genetic relationship of Populus qiongdaoensis in Populus based on full-length transcriptome sequences, nuclear genes and chloroplast genes[J]. Journal of Beijing Forestry University, 2021, 43(10): 28-37. DOI: 10.12171/j.1000-1522.20200286
    [5]Wang Ping, Wang Dongyang, Wang Jing, Jiang Libo, Wu Rongling. QTL epistasis effect analysis of seedling growth-related traits in Populus euphratica[J]. Journal of Beijing Forestry University, 2018, 40(12): 49-59. DOI: 10.13332/j.1000-1522.20180332
    [6]WANG Cong-peng, JIA Fu-li, LIU Sha, LIU Chao, XIA Xin-li, YIN Wei-lun. Drought induces alterations in stomatal development in Populus deltoides×P. nigra[J]. Journal of Beijing Forestry University, 2016, 38(6): 28-34. DOI: 10.13332/j.1000-1522.20160050
    [7]ZHAO Hui, WANG Sui, JIANG Jing, LIU Gui-feng. Screening of Populus simonii×Populus nigra WRKY70-interactive proteins by the yeast two-hybrid system[J]. Journal of Beijing Forestry University, 2016, 38(2): 44-51. DOI: 10.13332/j.1000-1522.20150162
    [8]GUO Peng, XING Xin, ZHANG Wan-jun, JIANG Jian. Cloning and characterization of PdDHN2b gene from Populus deltoides×Populus nigra.[J]. Journal of Beijing Forestry University, 2015, 37(1): 22-36. DOI: 10.13332/j.cnki.jbfu.2015.01.017
    [9]WEI Zun-zheng, GUO Li-qin, ZHANG Jin-feng, LI Bai-lian, ZHANG De-qiang, GUO Hua. Phylogenetic relationship of Populus by trnL-F sequence analysis[J]. Journal of Beijing Forestry University, 2010, 32(2): 27-33.
    [10]LI Jun, YANG Qiu-zhen, HUANG Jing-feng, WANG Yan, GE Jian-ming, FENG Chun. Impact of Clostera anachoreta and Micromelalopha troglodyta insect-induced damage on the hyperspectral features of Populus×canadesis cv.‘I-214’[J]. Journal of Beijing Forestry University, 2007, 29(6): 148-155. DOI: 10.13332/j.1000-1522.2007.06.021
  • Cited by

    Periodical cited type(21)

    1. 彭小静,黄海山,严芝银,邹星晨,贺康宁,程唱,王作枭,李睿,刘婧雯,石正阳,刘仟仟. 祁连山东部地区不同林分密度白桦天然林土壤理化性质特征. 生态学报. 2025(02): 743-756 .
    2. 张佳凝,张建军,赖宗锐,赵炯昌,胡亚伟,李阳,卫朝阳. 林分密度对刺槐人工林土壤养分和微生物群落的影响. 干旱区研究. 2025(02): 274-288 .
    3. 武燕,李歆玉,张奕婷,丁波,张运林,符裕红,刘讯. 西南喀斯特地区不同龄组马尾松人工林枯落物碳氮磷化学计量特征及其影响因子. 北京林业大学学报. 2024(02): 87-94 . 本站查看
    4. 巩大鹏,毕华兴,王劲峰,赵丹阳,黄靖涵,宋艺琳. 晋西黄土区不同密度刺槐人工林叶片-枯落物-土壤化学计量特征. 林业科学研究. 2024(02): 156-164 .
    5. 陈宇,庞涛,瞿相,彭建,杨汉波,代林利,辜云杰. 造林密度对楠木幼龄林生长、土壤理化性质与酶活性的影响. 四川林业科技. 2024(03): 9-20 .
    6. 龚世豪,查同刚,张晓霞,张恒硕,高连炜,于洋. 晋西黄土区典型林分凋落物-土壤养分对降雨再分配变化的响应. 生态学报. 2024(17): 7748-7759 .
    7. 窦金萍,武小钢,杨秀云,陈冠光,靳雅君,吴茜. 不同类型豆科植物群落凋落物对城市土壤质量的影响. 林业调查规划. 2024(05): 198-204 .
    8. 贾亚倢,杨建英,张建军,胡亚伟,张犇,赵炯昌,李阳,唐鹏. 晋西黄土区林分密度对油松人工林生物量及土壤理化性质的影响. 浙江农林大学学报. 2024(06): 1211-1221 .
    9. 陈涛,王露露,王思崇,朱学灵,叶永忠. 河南省丘陵低山区刺槐人工林立地分类及立地质量评价. 西北林学院学报. 2023(01): 153-159 .
    10. 高利强,刘莹,王国梁. 人工和天然油松林表层土壤不同粒径团聚体有机碳及其组分分布特征. 水土保持学报. 2023(02): 320-328 .
    11. 孙阔,袁兴中,王晓锋,袁嘉,候春丽,魏丽景. 三峡水库消落带土壤养分含量及生态化学计量特征. 长江流域资源与环境. 2023(02): 403-414 .
    12. 张誉. 不同造林技术对水土保持林土壤特性的影响研究. 广东蚕业. 2023(03): 50-52 .
    13. 钟欢,董文渊,浦婵,谢泽轩,张炜,郑静楠,夏莉. 滇东北4种类型筇竹林分土壤碳氮磷生态化学计量特征研究. 西南林业大学学报(自然科学). 2023(03): 111-119 .
    14. 魏亚娟,刘美英,解云虎,李星. 吉兰泰盐湖防护体系建立38 a以来土壤养分特征. 干旱区研究. 2023(05): 747-755 .
    15. 党记刚. 陕西黄土区典型人工林分结构与水土保持功能耦合关系研究. 科技创新与生产力. 2023(08): 47-50 .
    16. 朱燕,翟博超,孙美美,罗伶书,王瑛,杜盛. 黄土丘陵区不同密度刺槐和油松人工林土壤理化性质与化学计量特征. 水土保持研究. 2023(06): 160-167 .
    17. 兰道云,毕华兴,赵丹阳,王宁,云慧雅,王珊珊,崔艳红. 晋西黄土区不同密度油松人工林保育土壤功能评价. 水土保持学报. 2022(02): 189-196 .
    18. 郭强,官凤英,辉朝茂,刘蔚漪,邹学明. 密度和施肥调控对巨龙竹新竹生长及生物量特征的影响. 北京林业大学学报. 2022(04): 95-106 . 本站查看
    19. 张恒宇,孙树臣,吴元芝,安娟,宋红丽. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征. 生态环境学报. 2022(05): 875-884 .
    20. 郭鑫,魏天兴,陈宇轩,沙国良,任康,于欢. 黄土丘陵区典型退耕恢复植被土壤生态化学计量特征. 干旱区地理. 2022(06): 1899-1907 .
    21. 梁广国,陶建元,郭坤,王子旗,张艳明,王金颖. 不同林型、不同林分密度植被下土壤养分及其化学计量比研究. 吉林林业科技. 2021(06): 14-21 .

    Other cited types(13)

Catalog

    Article views (152) PDF downloads (21) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return