Citation: | Liu Xiaojie, Song Linghan, Zhang Canghao, Liu Jian, Yu Kunyong, Guo Xiaoyu, Wang Fan. Comparative study on estimation models of chlorophyll content in Phyllostachys pubescens leaves[J]. Journal of Beijing Forestry University, 2023, 45(10): 70-80. DOI: 10.12171/j.1000-1522.20230033 |
In order to realize hyperspectral inversion of leaf chlorophyll content of Phyllostachys pubesculus, the theoretical basis for growth state analysis and scientific management of P. pubesculus forest was provided.
In this study, based on the average reflectance data of leaves at different leaf positions and the measured average chlorophyll content data of sample plots, the average reflectance spectral curves were preprocessed by combining Savitzky-Golay smoothing, standard normalvariable transformation and first-order differentiation. The correlation coefficient method and successive projection algorithm (SPA) were used to extract the feature wavelength, respectively. Based on the characteristic wavelength results, SPXY algorithm, KS algorithm and random method (RS) were used to partition the data set, and six spectral training sets were constructed. Four machine learning algorithms including random forest (RF), extreme gradient boosting algorithm, support vector machine regression (SVR) and back propagation neural network were selected to construct chlorophyllin content estimation model of moso bamboo, and the most suitable model for chlorophyll content estimation was screened according to the evaluation results of the model.
In terms of the performance of data set partitioning algorithm, the SPXY data set partitioning method could significantly improve the estimation accuracy of chlorophyll content compared with KS and RS data partitioning method. Compared with the correlation coefficient method, SPA algorithm can effectively eliminate the influence of collinearity and improve the model accuracy in the feature wavelength screening method. In terms of machine learning model construction, the support vector machine regression model established by SPA algorithm combined with SPXY dataset partitioning method had the highest estimation accuracy for chlorophyll content of moso bamboo leaves, with R2 values of 0.78 and 0.76 for training and validation, respectively.
The SVR model established by the SPA algorithm combined with the SPXY data set partitioning method could accurately estimate the chlorophyll content of P. pubescens leaves, and could be used for rapid and non-destructive acquisition of chlorophyll content information of P. pubescens leaves.
[1] |
Zhang Y, Hui J, Qin Q M, et al. Transfer-learning-based approach for leaf chlorophyll content estimation of winter wheat from hyperspectral data[J]. Remote Sensing of Environment, 2021, 267: 112724. doi: 10.1016/j.rse.2021.112724
|
[2] |
Xu H X, Wang J Z, Qu Y L, et al. Estimating leaf chlorophyll content of Moso bamboo based on unmanned aerial vehicle visible images[J]. Remote Sensing, 2022, 14(12): 2864. doi: 10.3390/rs14122864
|
[3] |
刘琳, 王玉魁, 王星星, 等. 毛竹出笋后快速生长期茎秆色素含量与反射光谱的相关性[J]. 生态学报, 2013, 33(9): 2703−2711. doi: 10.5846/stxb201201200118
Liu L, Wang Y K, Wang X X, et al. Correlation between pigment content and reflectance spectrum of Phyllostachys pubescens stems during its rapid growth stage[J]. Acta Ecologica Sinica, 2013, 33(9): 2703−2711. doi: 10.5846/stxb201201200118
|
[4] |
曲怡铃, 唐燕, 周忠生, 等. 基于无人机可见光影像的毛竹相对叶绿素含量反演研究[J]. 江西农业大学学报, 2022, 44(1): 139−150.
Qu Y L, Tang Y, Zhou Z S, et al. Study on model simulation of relative chlorophyll content of Moso bamboo based on UAV visible light image[J]. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(1): 139−150.
|
[5] |
Qiao L, Tang W J, Gao D H, et al. UAV-based chlorophyll content estimation by evaluating vegetation index responses under different crop coverages[J]. Computers and Electronics in Agriculture, 2022, 196: 106775. doi: 10.1016/j.compag.2022.106775
|
[6] |
Ta N, Chang Q R, Zhang Y M. Estimation of apple tree leaf chlorophyll content based on machine learning methods[J]. Remote Sensing, 2021, 13(19): 3902. doi: 10.3390/rs13193902
|
[7] |
Hasan U, Jia K, Wang L, et al. Retrieval of leaf chlorophyll contents (LCCs) in litchi based on fractional order derivatives and VCPA-GA-ML algorithms[J]. Plants, 2023, 12(3): 501. doi: 10.3390/plants12030501
|
[8] |
Peng X T, Shi T Z, Song A H, et al. Estimating soil organic carbon using VIS/NIR spectroscopy with SVMR and SPA methods[J]. Remote Sensing, 2014, 6(4): 2699−2717. doi: 10.3390/rs6042699
|
[9] |
赵静远, 熊智新, 宁井铭, 等. 小波变换结合连续投影算法优化茶叶中咖啡碱的近红外分析模型[J]. 分析科学学报, 2021, 37(5): 611−617.
Zhao J Y, Xiong Z X, Ning J M, et al. Wavelet transform combined with SPA to optimize the near-infrared analysis model of caffeine in tea[J]. Journal of Analytical Science, 2021, 37(5): 611−617.
|
[10] |
刘玲玲, 王游游, 杨健, 等. 基于高光谱技术的枸杞子化学成分含量快速检测技术研究[J]. 中国中药杂志, 2023, 48(16): 4328−4336.
Liu L L, Wang Y Y, Yang J, et al. Rapid detection technology of chemical component content in Lycii fructus based on hyperspectral technology[J]. China Journal of Chinese Materia Medica, 2023, 48(16): 4328−4336.
|
[11] |
Lakshmanan M K, Boelt B, René G. A chemometric method for the viability analysis of spinach seeds by near infrared spectroscopy with variable selection using successive projections algorithm[J]. Journal of Near Infrared Spectroscopy, 2023, 31(1): 24−32. doi: 10.1177/09670335221138955
|
[12] |
易翔, 吕新, 张立福, 等. 基于RF和SPA的无人机高光谱估算棉花叶片全氮含量[J]. 作物杂志, 2023, 39(2): 245−252.
Yi X, Lü X, Zhang L F, et al. Unmanned aerial vehicle hyperspectral estimation of nitrogen content in cotton leaves based on RF and SPA[J]. Crops, 2023, 39(2): 245−252.
|
[13] |
王玉娜, 李粉玲, 王伟东, 等. 基于连续投影算法和光谱变换的冬小麦生物量高光谱遥感估算[J]. 麦类作物学报, 2020, 40(11): 1389−1398. doi: 10.7606/j.issn.1009-1041.2020.11.14
Wang Y N, Li F L, Wang W D, et al. Hyper-spectral remote sensing stimation of shoot biomass of winter wheat based on SPA and transformation spectra[J]. Journal of Triticeae Crops, 2020, 40(11): 1389−1398. doi: 10.7606/j.issn.1009-1041.2020.11.14
|
[14] |
汪六三, 鲁翠萍, 王儒敬, 等. 土壤碱解氮含量可见/近红外光谱预测模型优化[J]. 发光学报, 2018, 39(7): 1016−1023. doi: 10.3788/fgxb20183907.1016
Wang L S, Lu C P, Wang R J, et al. Optimization for Vis/NIRS prediction model of soil available nitrogen content[J]. Chinese Journal of Luminescence, 2018, 39(7): 1016−1023. doi: 10.3788/fgxb20183907.1016
|
[15] |
孙小香, 王芳东, 郭熙, 等. 基于水稻冠层高光谱的叶片SPAD值估算模型研究[J]. 江西农业大学学报, 2018, 40(3): 444−453.
Sun X X, Wang F D, Guo X, et al. The estimation models of rice leaf SPAD value based on canopy spectrum[J]. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(3): 444−453.
|
[16] |
姚胜男, 蒋金豹, 史晓霞, 等. 天然气微泄漏胁迫下大豆冠层叶绿素含量的高光谱估测[J]. 地理与地理信息科学, 2019, 35(5): 22−27. doi: 10.3969/j.issn.1672-0504.2019.05.004
Yao S N, Jiang J B, Shi X X, et al. Hyperspectral estimation of canopy chlorophyll content in soybean under natural gas micro-leakage stress[J]. Geography and Geo-information Science, 2019, 35(5): 22−27. doi: 10.3969/j.issn.1672-0504.2019.05.004
|
[17] |
Bhadra S, Sagan V, Maimaitijiang M, et al. Quantifying leaf chlorophyll concentration of sorghum from hyperspectral data using derivative calculus and machine learning[J]. Remote Sensing, 2020, 12(13): 2802.
|
[18] |
张仓皓, 杨樟平, 谢巧雅, 等. 毛竹立竹度无人机遥感识别有效高度的研究[J]. 遥感技术与应用, 2020, 35(6): 1436−1446.
Zhang C H, Yang Z P, Xie Q Y, et al. Study of effective height of the living bamboo density identification based on unmanned aerial vehicle (UAV) remote sensing[J]. Remote Sensing Technology and Application, 2020, 35(6): 1436−1446.
|
[19] |
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
Li H S. Principle and technology of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000.
|
[20] |
Araújo M C U, Saldanha T C B, Galvão R K H, et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 57(2): 65−73. doi: 10.1016/S0169-7439(01)00119-8
|
[21] |
熊智新, 马璞璠, 梁龙, 等. 近红外光谱结合连续投影算法检测综纤维素含量[J]. 中国造纸学报, 2019, 34(4): 46−51. doi: 10.11981/j.issn.1000-6842.2019.04.46
Xiong Z X, Ma P F, Liang L, et al. Determination of holocellulose content using near infrared spectroscopy and successive projections algorithm[J]. Transactions of China Pulp and Paper, 2019, 34(4): 46−51. doi: 10.11981/j.issn.1000-6842.2019.04.46
|
[22] |
Galvão R K H, Araujo M C U, José G E, et al. A method for calibration and validation subset partitioning[J]. Talanta, 2005, 67(4): 67.
|
[23] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5−32. doi: 10.1023/A:1010933404324
|
[24] |
Chen T Q, Guestrin C. Xgboost: a scalable tree boosting system[C]//Krishnapuram B, Shah M, Smola A J, et al. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery, 2016: 785−794.
|
[25] |
Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273−297.
|
[26] |
Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533−536. doi: 10.1038/323533a0
|
[27] |
朱思聪, 高西娅, 张朱珊莹, 等. 红外光谱数据集划分比例及预处理方法研究[J]. 分析化学, 2022, 50(9): 1415−1429.
Zhu S C, Gao X Y, Zhang-Zhu S Y, et al. Partitioning proportion and pretreatment method of infrared spectral dataset[J]. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1415−1429.
|
[28] |
伏乃林, 黄飞. 基于样本挑选和不同偏最小二乘方法的近红外光谱玉米淀粉组分校正模型的研究[J]. 安徽农业科学, 2011, 39(36): 22571−22573. doi: 10.3969/j.issn.0517-6611.2011.36.136
Fu N L, Huang F. Research on NIR calibration model of corn starch content based on subset selecting and a series of PLS method[J]. Journal of Anhui Agricultural Sciences, 2011, 39(36): 22571−22573. doi: 10.3969/j.issn.0517-6611.2011.36.136
|
[29] |
Tian H, Zhang L N, Li M, et al. Weighted SPXY method for calibration set selection for composition analysis based on near-infrared spectroscopy[J]. Infrared Physics and Technology, 2018, 95: 88−92. doi: 10.1016/j.infrared.2018.10.030
|
[30] |
Wang J J, Xu Y, Wu G F. The integration of species information and soil properties for hyperspectral estimation of leaf biochemical parameters in mangrove forest[J]. Ecological Indicators, 2020, 115: 106467. doi: 10.1016/j.ecolind.2020.106467
|
[31] |
牛芳鹏, 李新国, 麦麦提吐尔逊·艾则孜, 等. 基于连续投影算法的博斯腾湖西岸湖滨绿洲土壤有机碳含量的高光谱估算[J]. 浙江大学学报(农业与生命科学版), 2021, 47(5): 673−682.
Niu F P, Li X G, Mamattursun E, et al. Hyperspectral estimation of soil organic carbon content in the west lakeside oasis of Bosten Lake based on successive projection algorithm[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(5): 673−682.
|
[32] |
邵园园, 王永贤, 玄冠涛, 等. 高光谱成像快速检测壳聚糖涂膜草莓可溶性固形物[J]. 农业工程学报, 2019, 35(18): 245−254. doi: 10.11975/j.issn.1002-6819.2019.18.030
Shao Y Y, Wang Y X, Xuan G T, et al. Rapid detection of soluble solids content in strawberry coated with chitosan based on hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(18): 245−254. doi: 10.11975/j.issn.1002-6819.2019.18.030
|
[33] |
刘潭, 许童羽, 于丰华, 等. 改进特征波段选取和混合集成建模的东北粳稻叶绿素含量估算[J]. 光谱学与光谱分析, 2021, 41(8): 2556−2564.
Liu T, Xu T Y, Yu F H, et al. Chlorophyll content estimation of northeast jaonica rice based on improved feature band selection and hybrid integrated modeling[J]. Spectroscopy and Spectral Analysis, 2021, 41(8): 2556−2564.
|
[1] | Li Yang, Kang Xingang. Mixed model of forest space utilization in spruce-fir coniferous and broadleaved mixed forest of Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 71-79. DOI: 10.12171/j.1000-1522.20190112 |
[2] | Li Cheng, Ma Jingyong, Zhang Cai, Wang Ben, Zha Tianshan, Jia Xin. Seasonal dynamics of light-use efficiency in Artemisia ordosica shrubby desert[J]. Journal of Beijing Forestry University, 2019, 41(9): 99-107. DOI: 10.13332/j.1000-1522.20180217 |
[3] | Wen Yongbin, Han Hairong, Cheng Xiaoqin, Li Zuzheng. Forest water use efficiency in Qianyanzhou based on Biome-BGC model, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 69-77. DOI: 10.13332/j.1000-1522.20190001 |
[4] | YANG Shuang, YUAN Xiao-na, WANG Zhong-xuan, ZHU Pu, JIA Gui-xia. Effects of HgCl2 stress on the upper leaf necroses and water use efficiency of oriental hybrid lilies[J]. Journal of Beijing Forestry University, 2016, 38(5): 114-119. DOI: 10.13332/j.1000-1522.20150306 |
[5] | WEN Yi-bo, CHANG Ying, FAN Wen-yi. Algorithm for leaf area index inversion in the Great Xing'an Mountains using MISR data and spatial scaling for the validation[J]. Journal of Beijing Forestry University, 2016, 38(5): 1-10. DOI: 10.13332/j.1000-1522.20150204 |
[6] | JIANG Dong-yue, QIAN Yong-qiang, LIU Jun-xiang, WANG Zheng-chao, FEI Ying-jie, SUN Zhen-yuan. Evaluation of radiation use efficiency of superior clones of Salix based on photosynthetic light-response characteristics.[J]. Journal of Beijing Forestry University, 2015, 37(5): 49-61. DOI: 10.13332/j.1000-1522.20140187 |
[7] | GUO Peng, XING Hai-tao, XIA Xin-li, YIN Wei-lun. Discrimination of water use efficiency(WUE) among three Populus deltoids clones.[J]. Journal of Beijing Forestry University, 2011, 33(2): 19-24. |
[8] | DUAN Ai-guo, ZHANG Jian-guo, ZHANG Jun-pei, HE Cai-yun. Dynamics of water-use efficiency of tree species for vegetation restoration in dry-hot river valleys[J]. Journal of Beijing Forestry University, 2010, 32(6): 13-19. |
[9] | ZHANG Jian-jun, DONG Huang-biao, NA Lei, WANG Peng. Comparison of rainfallrunoff process in watersheds under different scales on the loess area in western Shanxi Province, northern China.[J]. Journal of Beijing Forestry University, 2008, 30(2): 106-112. |
[10] | ZHAO Feng-jun, SHEN Ying-bai, GAO Rong-fu, SU Xiao-hua, ZHANG Bing-yu. Relationship between foliar carbon isotope composition (δ13C) and long-term water use efficiency (WUEL)[J]. Journal of Beijing Forestry University, 2006, 28(6): 40-45. |
1. |
包塔娜,范文义. 基于集合卡尔曼滤波的帽儿山森林多源LAI产品重建及融合校正方法. 浙江农林大学学报. 2024(04): 841-849 .
![]() | |
2. |
郝兵,李萍,刘东. 基于模糊小波的光照干扰图像对比度增强方法. 激光杂志. 2023(11): 104-108 .
![]() |