Citation: | Liu Yang, Wang Hesong. Effects of climate change on distribution of suitable area of Pinus tabuliformis plantation in China[J]. Journal of Beijing Forestry University, 2024, 46(6): 82-92. DOI: 10.12171/j.1000-1522.20230072 |
Chinese pine (Pinus tabuliformis) is one of the most important conifer species for afforestation in the northern region of China, with well-developed roots and strong abilities in soil and water conservation, playing an important role in ecological protection. Studying the ecological characteristics and distribution boundaries of Chinese pine, exploring the optimal afforestation area and understanding the changes in the distribution of suitable area under climate change are prominent to formulate reasonable afforestation and management plan for Chinese pine, and to understand the adaptability of Chinese pine plantations to climate change.
Based on 221 effective distribution records of Chinese pine plantation in China and 22 environmental variables, combined with ArcGIS, the MaxEnt model was used to predict the potential distribution of Chinese pine plantation under background of climate change. Meanwhile, the key environmental variables and suitable ranges that constrain the distribution of Chinese pine plantation were determined and the geographical distribution and area changes of Chinese pine plantation in different future climate scenarios were also predicted.
(1) The area under curve (AUC) value of the Maxent model reached 0.955, indicating the reliability of the simulation results. (2) The current suitable area of Chinese pine plantation in China was 98.90 × 104 km2, concentrated in the north of Qinling Mountains, Taihang Mountains, the Loess Plateau, Yan Mountains of northern China and western Liaoning Mountains of northwestern China. The main environmental variables affecting the distribution of Chinese pine plantation were the precipitation of the warmest quarter, mean temperature of the driest quarter, min. temperature of the coldest month and altitude. Among them, precipitation of the warmest quarter was the primary variables affecting the distribution of Chinese pine plantation, with a suitable range from 223 to 389 mm. Mean temperature of the driest quarter ranged from −5 to 5 ℃, and min temperature of the coldest month ranged from −14.5 to −3.5 ℃. The suitable altitude for the growth of Chinese pine plantation ranged from 100 to 2100 m. (3) From the trend of changes in the past 90 years (1931−2020), the southern boundary of suitable area for Chinese pine plantation had remained basically unchanged, along the line of Minshan-Qinling-Daba Mountains, reaching the southern end of the Qilian Mountains and the southern side of the Helan Mountains to the west, without expanding to the northwest. However, the northern boundary of the suitable area for Chinese pine plantation had been extending northward, approximately 3.5° northward, and the center of gravity of the high suitability area had also migrated northward. Therefore, the area of suitable habitat for Chinese pine plantation had been increasing. From the perspective of future climate change scenarios, in the two periods of 2041−2060 and 2061−2080, the potential suitable area of Chinese pine plantation continued to show a trend of northward migration, and the area of high suitable area increased firstly and then decreased.
Climate change will lead to the expansion of suitable area for Pinus tabuliformis to the north, while high suitability area in the Loess Plateau and Qinling Mountains are fragmented. Therefore, caution should be exercised when introducing and cultivating Pinus tabuliformis. The high suitability areas in the northern part of Yanshan Mountain and the western part of Liaoning Province are relatively stable and suitable for further expansion of planting.
[1] |
Niu S H, Li W, Li Y. Chinese pine (Pinus tabuliformis Carr.)[J]. Trends in Genetics, 2022, 38(4): 409−411. doi: 10.1016/j.tig.2022.01.006
|
[2] |
Xue R H, Jiao L, Qi C L, et al. Growth and response patterns of Picea crassifolia and Pinus tabuliformis to climate factors in the Qilian Mountains, northwest China[J/OL]. Dendrochronologia, 2022, 71, 125905[2023−09−03]. https://doi.org/10.1016/j.dendro.2021.125905.
|
[3] |
Suo X H, Cao S X. China’s three north shelter forest program: cost-benefit analysis and policy implications[J]. Environment Development and Sustainability, 2021, 23(10): 14605−14618. doi: 10.1007/s10668-021-01260-z
|
[4] |
Chen G, Shi C, Cheng S, et al. The structure and soil characteristics of a Pinus tabuliformis planted forest after 60 years of natural development in North China[J/OL]. Silva Fennica, 2007, 51(1): 1709[2023−09−03]. https://doi.org/10.14214/sf.1709.
|
[5] |
Liang B Y, Wang J, Zhang Z Y, et al. Planted forest is catching up with natural forest in China in terms of carbon density and carbon storage[J]. Fundamental Research, 2022, 2(5): 688−696. doi: 10.1016/j.fmre.2022.04.008
|
[6] |
Martínez M J, Cameletti M, Conesa D, et al. Species distribution modeling: a statistical review with focus in spatio-temporal issues[J]. Stochastic Environmental Research and Risk Assessment, 2018, 32(11): 3227−3244. doi: 10.1007/s00477-018-1548-7
|
[7] |
Elith J, Leathwick J R. Species distribution models: ecological explanation and prediction across space and time[J]. Annual Review of Ecology, Evolution, and Systematics, 2009, 40: 677−697. doi: 10.1146/annurev.ecolsys.110308.120159
|
[8] |
许仲林, 彭焕华, 彭守璋. 物种分布模型的发展及评价方法[J]. 生态学报, 2015, 35(2): 557−567.
Xu Z L, Peng H H, Peng S Z. The development and evaluation of species distribution models[J]. Acta Ecologica Sinica, 2015, 35(2): 557−567.
|
[9] |
Zhang S, Liu X G, Li R M, et al. AHP-GIS and MaxEnt for delineation of potential distribution of Arabica coffee plantation under future climate in Yunnan, China[J/OL]. Ecological Indicators, 2021, 132: 108339[2023−09−03]. https://doi.org/10.1016/j.ecolind.2021.108339.
|
[10] |
Li G Q, Xu G H, Guo K, et al. Geographical boundary and climatic analysis of Pinus tabulaeformis in China: insights on its afforestation[J]. Ecological Engineering, 2016, 86: 75−84. doi: 10.1016/j.ecoleng.2015.10.032
|
[11] |
唐兴港, 袁颖丹, 张金池. 气候变化对油松潜在地理分布时空格局的影响[J]. 东北林业大学学报, 2021, 49(9): 1−7.
Tang X G, Yuan Y D, Zhang J C. Simulation of potential spatial-temporal population dynamics of Pinus tabuliformis under climate change[J]. Journal of Northeast Forestry University, 2021, 49(9): 1−7.
|
[12] |
杜倩, 魏晨辉, 梁陈涛, 等. 中国东北地区12个建群树种对气候变化响应的MaxEnt模型分析[J]. 生态学报, 2020, 40(16): 5674−5684.
Du Q, Wei C H, Liang C T, et al. Future climatic adaption of 12 dominant tree species in Northeast China under 3 climatic scenarios by using MaxEnt modeling[J]. Acta Ecological Sinica, 2020, 40(16): 5674−5684.
|
[13] |
许斌, 朱文泉, 李培先. 不同气候条件下桫椤在中国的潜在适生区分布[J]. 生态学报, 2020, 40(17): 6105−6117.
Xu B, Zhu W Q, Li P X. Potential distributions of Alsophila spinulosa under different climates in China[J]. Acta Ecological Sinica, 2020, 40(17): 6105−6117.
|
[14] |
邹武, 王渌, 赖童, 等. 木莲(Manglietia fordiana)的适生分布、影响因子与保护空缺研究[J]. 生态学报, 2022, 42(5): 1889−1900.
Zou W, Wang L, Lai T, et al. Distribution, influencing factors and gaps analysis of Manglietia fordiana: implications of conservation to mountain broad-leaved forests[J]. Acta Ecological Sinica, 2022, 42(5): 1889−1900.
|
[15] |
赵光华, 崔馨月, 王智, 等. 气候变化背景下我国酸枣潜在适生区预测[J]. 林业科学, 2021, 57(6): 158−168.
Zhao G H, Cui X Y, Wang Z, et al. Prediction of potential distribution of Ziziphus jujuba var. spinosa in China under context of climate change[J]. Scientia Silvae Sinicae, 2021, 57(6): 158−168.
|
[16] |
王绮, 樊保国, 赵光华. 气候变化下毛榛在中国的潜在适生区预测[J]. 生态学杂志, 2020, 39(11): 3774−3784.
Wang Q, Fan B G, Zhao G H. Prediction of potential distribution area of Corylus mandshurica in China under climate change[J]. Chinese Journal of Ecology, 2020, 39(11): 3774−3784.
|
[17] |
刘维, 赵儒楠, 圣倩倩, 等. 矮牡丹在中国的地理分布及潜在分布区预测[J]. 北京林业大学学报, 2021, 43(12): 83−92.
Liu W, Zhao R N, Sheng Q Q, et al. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. Journal of Beijing Forestry University, 2021, 43(12): 83−92.
|
[18] |
Li Z C, Xiao J, Lu G, et al. Productivity and profitability of Larix principis-rupprechtii and Pinus tabuliformis plantation forests in Northeast China[J/OL]. Forest Policy and Economics, 2020, 121: 102314[2023−09−03]. https://doi.org/10.1016/j.forpol.2020.102314.
|
[19] |
Han C, Li Y G, Dong X X, et al. Pinus tabulaeformis forests have higher carbon sequestration potential than Larix principis-rupprechtii forests in a dryland mountain ecosystem, Northwest China[J/OL]. Forests, 2022, 13(5): 739[2023−09−03]. https://doi.org/10.3390/f13050739.
|
[20] |
Liu Y, Li P, Wang G L, et al. Above- and below-ground biomass distribution and morphological characteristics respond to nitrogen addition in Pinus tabuliformis[J]. New Zealand Journal of Forestry Science, 2016, 46(1): 1−9. doi: 10.1186/s40490-015-0057-4
|
[21] |
Zeng W S, Zhang L J, Chen X Y, et al. Construction of compatible and additive individual-tree biomass models for Pinus tabulaeformis in China[J]. Canadian Journal of Forest Research, 2017, 47(4): 467−475. doi: 10.1139/cjfr-2016-0342
|
[22] |
Wang H H, Chu H L, Dou Q, et al. Seasonal changes in Pinus tabuliformis root-associated fungal microbiota drive N and P cycling in terrestrial ecosystem[J/OL]. Frontiers in Microbiology, 2021, 11: 526898[2023−09−03]. https://doi.org/10.3389/fmicb.2020.526898.
|
[23] |
陈美霖, 韩海荣. 黄土高原地区4种常见树种适宜区对气候变化响应[J]. 北京林业大学学报, 2023, 45(3): 21−33.
Chen M L, Han H R. Response of four common tree species suitable areas to climate change in the Loess Plateau region of northern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 21−33.
|
[24] |
Peng S Z, Ding Y X, Wen Z M, et al. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100[J]. Agricultural and Forest Meteorology, 2017, 233: 183−194. doi: 10.1016/j.agrformet.2016.11.129
|
[25] |
Peng S Z, Gang C C, Cao Y, et al. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100[J]. International Journal of Climatology, 2017, 38: 2250−2264.
|
[26] |
Peng S Z, Ding Y X, Liu W Z, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 2019, 11: 1931−1946. doi: 10.5194/essd-11-1931-2019
|
[27] |
Ding Y X, Peng S Z. Spatiotemporal trends and attribution of drought across China from 1901–2100[J/OL]. Sustainability, 2020, 12: 477[2023−09−03]. https://doi.org/10.3390/su12020477.
|
[28] |
Fick S E, Hijmans R J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37: 4302−4315. doi: 10.1002/joc.5086
|
[29] |
Jimenez-Valverde A. Threshold-dependence as a desirable attribute for discrimination assessment: implications for the evaluation of species distribution models[J]. Biodiversity and Conservation, 2014, 23(2): 369−385. doi: 10.1007/s10531-013-0606-1
|
[30] |
黄睿智, 于涛, 赵辉, 等. 气候变化背景下濒危植物梓叶槭在中国适生分布区预测[J]. 北京林业大学学报, 2021, 43(5): 33−43.
Huang R Z, Yu T, Zhao H, et al. Prediction of suitable distribution area of the endangered plant Acer catalpifolium under the background of climate change in China[J]. Journal of Beijing Forestry University, 2021, 43(5): 33−43.
|
[31] |
Li Y, Shao W, Jiang J. Predicting the potential global distribution of Sapindus mukorossi under climate change based on MaxEnt modelling[J]. Environmental Science and Pollution Research International, 2021, 29(15): 21751−21768.
|
[32] |
Gebrewahid Y, Abrehe S, Meresa E, et al. Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate change in Northern Ethiopia[J/OL]. Ecological Processes, 2020, 9(1): 6[2023−09−03]. https://doi.org/10.1186/s13717-019-0210-8.
|
[33] |
Wan J Z, Wang C J, Han S J, et al. Planning the priority protected areas of endangered orchid species in northeastern China[J]. Biodiversity and Conservation, 2014, 23(6): 1395−1409. doi: 10.1007/s10531-014-0671-0
|
[34] |
Chen W, Wei J, Zhu K. Predicting potential distribution of Emmenopterys henryi in Southwest China based on the Maxent model and influencing factors[J]. Tropical Ecology, 2022, 63(4): 572−583. doi: 10.1007/s42965-021-00214-w
|
[35] |
Ouyang X H, Pan J L, Wu Z T, et al. Predicting the potential distribution of Campsis grandiflora in China under climate change[J]. Environmental Science and Pollution Research, 2022, 29(42): 63629−63639. doi: 10.1007/s11356-022-20256-4
|
[36] |
郑景云, 尹云鹤, 李炳元. 中国气候区划新方案[J]. 地理学报, 2010, 65(1): 3−12.
Zheng J Y, Yin Y H, Li B Y. A new scheme for climate regionalization in China[J]. Acta Geographica Sinica, 2010, 65(1): 3−12.
|
[37] |
唐燕, 赵儒楠, 任钢,等. 基于MaxEnt模型的中华枸杞潜在分布预测及其重要影响因子分析[J]. 北京林业大学学报, 2021, 43(6): 23−32.
Tang Y, Zhao R N, Ren G, et al. Prediction of potential distribution of Lycium chinense based on MaxEnt model and analysis of its important influencing factors[J]. Journal of Beijing Forestry University, 2021, 43(6): 23−32.
|
[38] |
Zhang K L, Yao L J, Meng J S, et al. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change[J]. Science of the Total Environment, 2018, 634: 1326−1334. doi: 10.1016/j.scitotenv.2018.04.112
|
[39] |
Sun S X, Zhang Y, Huang D Z, et al. The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China[J/OL]. Science of the Total Environment, 2020, 744: 140786[2023−09−03]. https://doi.org/10.1016/j.scitotenv.2020.140786.
|
[40] |
Chen Y M, Cao Y. Response of tree regeneration and understory plant species diversity to stand density in mature Pinus tabulaeformis plantations in the hilly area of the Loess Plateau, China[J]. Ecological Engineering, 2014, 73: 238−245. doi: 10.1016/j.ecoleng.2014.09.055
|
[41] |
Zhao S D, Jiang Y, Wen Y, et al. Frequent locally absent rings indicate increased threats of extreme droughts to semi-arid Pinus tabuliformis forests in North China[J/OL]. Agricultural and Forest Meteorology, 2021, 308−309(15): 108601[2023−09−03]. https://doi.org/10.1016/j.agrformet.2021.108601.
|
[42] |
Zhang D N, Zuo X X, Zang C F. Assessment of future potential carbon sequestration and water consumption in the construction area of the Three-North Shelterbelt Programme in China[J/OL]. Agricultural and Forest Meteorology, 2021, 303: 108377[2023−09−03]. https://doi.org/10.1016/j.agrformet.2021.108377.
|
1. |
谢孟,张学星,罗燕,马永鹏,李伟,杨琳祥,柳文,赵培仙,李正红,马宏. 基于MaxEnt模型的云南干热河谷适生树种选择. 生态学报. 2024(09): 3689-3707 .
![]() | |
2. |
刘阳,王鹤松. 气候变化对我国油松人工林适生区分布的影响. 北京林业大学学报. 2024(06): 82-92 .
![]() | |
3. |
徐亚兰,杨智敏,卢盛俊,周帆,周彭晨,王斌. 基于Maxent模型的湖南省白颈长尾雉适宜栖息地预测. 生命科学研究. 2024(03): 267-273 .
![]() | |
4. |
杨璐,刘小芳,巨佳敏,张秀敏,常富强,赵勇钢. 黄土坡面种植柠条对土壤团聚体稳定性和可蚀性的影响. 水土保持通报. 2024(03): 46-55 .
![]() | |
5. |
陈程浩,龙主多杰,陆徐伟,宋扎磋,苗琪,孙芳慧,索南吉. 基于优化MaxEnt模型的中国紫堇属植物生境适宜性研究. 生态学报. 2023(24): 10345-10362 .
![]() |