• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yan Jin, Zhou Xiaocheng, Huang Tingting, Le Tongchao, Wang Yongrong, Wu Shanqun. Evaluation of forest ecological quality in coastal zone counties of Fujian Province, eastern China based on multi-source remote sensing data[J]. Journal of Beijing Forestry University, 2024, 46(5): 12-25. DOI: 10.12171/j.1000-1522.20230200
Citation: Yan Jin, Zhou Xiaocheng, Huang Tingting, Le Tongchao, Wang Yongrong, Wu Shanqun. Evaluation of forest ecological quality in coastal zone counties of Fujian Province, eastern China based on multi-source remote sensing data[J]. Journal of Beijing Forestry University, 2024, 46(5): 12-25. DOI: 10.12171/j.1000-1522.20230200

Evaluation of forest ecological quality in coastal zone counties of Fujian Province, eastern China based on multi-source remote sensing data

More Information
  • Received Date: August 22, 2023
  • Revised Date: November 06, 2023
  • Available Online: April 27, 2024
  • Objective 

    Forest ecological quality reflects the ecological quality of forests from an ecological perspective, measuring the comprehensive capacity of forests to improve the ecological environment, maintain ecological balance, and provide ecological functions and services. Utilizing medium and high-resolution multisource remote sensing data, we aim to acquire crucial indicator information that characterizes forest ecological quality at a large-scale level. Based on this foundation, our objective is to analyze the forest ecological quality status in the 40 coastal counties of Fujian Province of eastern China.

    Method 

    Firstly, the primary data source utilized was 2 m resolution multisource remote sensing data. The bi-level scale-sets model (BSM) was employed to determine the optimal segmentation scale, integrating multiple classifiers to create an algorithm set. The best classification algorithm for forest type extraction was automatically selected. This approach was complemented by the use of Sentinel remote sensing data in 2020 and fine forest classification products, resulting in an optimized fine-scale distribution map of coastal forests in Fujian Province for year 2020. Secondly, forest age was estimated using disturbance onset time features derived from the LandTrendr algorithm. Additionally, GEDI crown height products were used to obtain the canopy height distribution map of coastal forests. Building upon the extraction of key forest quality indicators through remote sensing methods, a principal component analysis was conducted on eight forest ecological quality assessment indicators obtained through remote sensing. This led to a comprehensive assessment of forest ecological quality for the coastal counties of Fujian Province.

    Result 

    In 2020, approximately 50% of the 40 coastal counties in Fujian’s coastal zone exhibited a favorable level of forest ecological quality. Among them, Xianyou County, Minhou County, Nan’an City, Xiapu County, Zherong County, as well as the districts of Haicang, Siming, Jimei, and Tong’an in Xiamen, demonstrated excellent forest ecological quality. On the other hand, counties with relatively poor forest ecological quality included Huian County, Xiuyu District, Shishi City, Fu’an City, Pingtan Experimental Zone, and Zhao’an County.

    Conclusion 

    Utilizing high and medium-resolution multisource remote sensing data, the advantages of remote sensing large-scale monitoring have been leveraged to provide an objective assessment of the forest ecological quality in the 40 coastal counties of Fujian Province. The research findings reveal that there is considerable room for improvement in the forest ecological quality of the coastal counties in Fujian Province in 2020. Addressing the existing issues calls for the implementation of appropriate forest management measures to enhance the forest ecological quality.

  • [1]
    Baumann M, Ozdogan M, Wolter P T, et al. Landsat remote sensing of forest windfall disturbance[J]. Remote Sensing of Environment, 2014, 143: 171−179. doi: 10.1016/j.rse.2013.12.020
    [2]
    Ghebrezgabher M G, Yang T, Yang X, et al. Extracting and analyzing forest and woodland cover change in Eritrea based on Landsat data using supervised classification[J]. The Egyptian Journal of Remote Sensing and Space Science, 2016, 19(1): 37−47. doi: 10.1016/j.ejrs.2015.09.002
    [3]
    张会儒, 雷相东, 张春雨, 等. 森林质量评价及精准提升理论与技术研究[J]. 北京林业大学学报, 2019, 41(5): 1−18.

    Zhang H R, Lei X D, Zhang C Y, et al. Research on theory and technology of forest quality evaluation and precision improvement[J]. Journal of Beijing Forestry University, 2019, 41(5): 1−18.
    [4]
    石春娜, 王立群. 浅析森林资源质量内涵[J]. 林业经济问题, 2007, 27(3): 221−224. doi: 10.3969/j.issn.1005-9709.2007.03.006

    Shi C N, Wang L Q. Connotation of forest resourses quality[J]. Problems of Forestry Economics, 2007, 27(3): 221−224. doi: 10.3969/j.issn.1005-9709.2007.03.006
    [5]
    韩皓爽, 万荣荣. 森林生态质量评估方法研究进展[J]. 生态科学, 2021, 40(4): 212−222.

    Han H S, Wan R R. A review on the methods of ecological evaluation of forest quality[J]. Ecological Science, 2021, 40(4): 212−222.
    [6]
    张静静, 穆艳华. 伏牛山地区森林生态系统生境质量多视角评价[J]. 生态科学, 2021, 40(5): 116−121.

    Zhang J J, Mu Y H. Multi-perspective evaluation on habitat quality of forest ecosystem in Funiu Mountain Region[J]. Ecological Science, 2021, 40(5): 116−121.
    [7]
    莫可, 赵天忠, 蓝海洋, 等. 基于因子分析的小班尺度用材林森林质量评价: 以福建将乐国有林场为例[J]. 北京林业大学学报, 2015, 37(1): 48−54.

    Mo K, Zhao T Z, Lan H Y, et al. Quality assessment at subcompartment level of forests used for timber production based on factor analysis: a case study in Jiangle National Forest Farm, Fujian Province[J]. Journal of Beijing Forestry University, 2015, 37(1): 48−54.
    [8]
    Feng J G, Wang J S , Yao S C, et al. Dynamic assessment of forest resources quality at the provincial level using AHP and cluster analysis[J]. Computers and Electronics in Agriculture, 2016, 124: 184-193.
    [9]
    张琳, 宋创业, 袁伟影, 等. 基于地面调查的植被生态质量综合评估指标体系构建[J]. 生态学报, 2023, 43(1): 128−139.

    Zhang L, Song C Y, Yuan W Y, et al. Construction of comprehensive evaluation index system of vegetation ecological quality based on field survey[J]. Acta Ecologica Sinica, 2023, 43(1): 128−139.
    [10]
    陈强, 陈云浩, 王萌杰, 等. 2001—2010年洞庭湖生态系统质量遥感综合评价与变化分析[J]. 生态学报, 2015, 35(13): 4347−4356.

    Chen Q, Chen Y H, Wang M J, et al. Ecosystem quality comprehensive evaluation and change analysis of Dongting Lake in 2001−2010 based on remote sensing[J]. Acta Ecologica Sinica, 2015, 35(13): 4347−4356.
    [11]
    Zhao Q, Yu S, Zhao F, et al. Comparison of machine learning algorithms for forest parameter estimations and application for forest quality assessments[J]. Forest Ecology and Management, 2019, 434: 224–234.
    [12]
    龚宇浩, 孙益群, 董晨,等. 基于广义代数差分法和因子选择的杉木人工林立地质量评价[J]. 浙江农林大学学报, 2023, 40(6): 1282−1291. doi: 10.11833/j.issn.2095-0756.20220716

    Gong Y H, Sun Y Q, Dong C, et al. Site quality evaluation of Cunninghamia lanceolata plantation based on generalized algebraic difference approach and factor selection[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1282−1291. doi: 10.11833/j.issn.2095-0756.20220716
    [13]
    唐雅娟. 基于小班尺度的永安市森林质量评价[J]. 林业与环境科学, 2021, 37(6): 130−134. doi: 10.3969/j.issn.1006-4427.2021.06.019

    Tang Y J. Evaluation of forest quality based on subcompartment Scale in Yongan[J]. Forestry and Environmental Science, 2021, 37(6): 130−134. doi: 10.3969/j.issn.1006-4427.2021.06.019
    [14]
    杜志, 甘世书, 胡觉. 全国森林资源质量综合评价[J]. 中南林业调查规划, 2018, 37(3): 1−5.

    Du Z, Gan S S, Hu J. Comprehensive evaluation of forest resources quality in China[J]. Central South Forestry Inventory and Planning, 2018, 37(3): 1−5.
    [15]
    刘婷婷, 孔越, 吴叶, 等. 基于熵权模糊物元模型的我国省域森林生态安全研究[J]. 生态学报, 2017, 37(15): 4946−4955.

    Liu T T, Kong Y, Wu Y, et al. Provincial forest ecological security evaluation in China based on the entropy weight of the fuzzy matter element model[J]. Acta Ecologica Sinica, 2017, 37(15): 4946−4955.
    [16]
    邵炜, 熊宇, 卢惠, 等. 永定河流域森林质量评价与分析[J]. 陕西林业科技, 2021, 49(6): 36−40. doi: 10.12340/sxlykj202106009

    Shao W, Xiong Y, Lu H, et al. Evaluation of forest resources quality in Yongding River Basin[J]. Shanxi Forest Science and Technology, 2021, 49(6): 36−40. doi: 10.12340/sxlykj202106009
    [17]
    冯继广, 王景升, 姚帅臣, 等. 基于因子分析的森林资源质量综合评价[J]. 中南林业科技大学学报, 2017, 37(1): 27−32, 42.

    Feng J G, Wang J S, Yao S C, et al. Comprehensive evaluation of forest resources quality based on factor analysis[J]. Journal of Central South University of Forestry & Technology, 2017, 37(1): 27−32, 42.
    [18]
    刘海轩, 李锋, 马远, 等. 基于景观多样性的北京市域森林质量综合评价[J]. 中国园林, 2022, 38(10): 14−19.

    Liu H X, Li F, Ma Y, et al. Comprehensive evaluation of forest quality in Beijing based on landscape diversity[J]. Chinese Landscape Architecture, 2022, 38(10): 14−19.
    [19]
    Roy D P, Kovalskyy V, Zhang H K, et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity[J]. Remote Sensing of Environment, 2016, 185: 57−70. doi: 10.1016/j.rse.2015.12.024
    [20]
    Liu L, Zhang X, Chen X, et al. GLC_FCS30-2020: Global land cover with fine classification system at 30 m in 2020[J]. Earth System Science Data, 2020, 13: 2753−2776.
    [21]
    Dubayah R, Blair J B, Goetz S, et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the earth’s forests and topography[J/OL]. Science of Remote Sensing, 2020, 1: 100002[2023−03−21]. https://doi.org/10.1016/j.srs.2020.100002.
    [22]
    Potapov P, Li X, Hernandez-Serna A, et al. Mapping global forest canopy height through integration of GEDI and Landsat data[J]. Remote Sensing of Environment, 2021, 253: 112165. doi: 10.1016/j.rse.2020.112165
    [23]
    Xiao D, Chen Q, Li S. A multi-scale cascaded hierarchical model for image labeling[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2016, 30(9): 1660005. doi: 10.1142/S0218001416600053
    [24]
    Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127−150. doi: 10.1016/0034-4257(79)90013-0
    [25]
    Gao B C. NDWI: a normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3): 257−266. doi: 10.1016/S0034-4257(96)00067-3
    [26]
    Jordan C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4): 663−666. doi: 10.2307/1936256
    [27]
    Dihkan M, Guneroglu N, Karsli F, et al. Remote sensing of tea plantations using an SVM classifier and pattern-based accuracy assessment technique[J]. International Journal of Remote Sensing, 2013, 34(23): 8549−8565. doi: 10.1080/01431161.2013.845317
    [28]
    宋荣杰, 宁纪锋, 常庆瑞, 等. 基于小波纹理和随机森林的猕猴桃果园遥感提取[J]. 农业机械学报, 2018, 49(4): 222−231. doi: 10.6041/j.issn.1000-1298.2018.04.025

    Song R J, Ning J F, Chang Q R, et al. Kiwifruit orchard mapping based on wavelet textures and random forest[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 222−231. doi: 10.6041/j.issn.1000-1298.2018.04.025
    [29]
    窦鹏. 基于投票法的多分类器集成遥感影像分类技术[D]. 兰州: 兰州交通大学, 2014.

    Dou P. Remote sensing image classification with multiple classifiers integration based on voting [D]. Lanzhou: Lanzhou Jiaotong University, 2014.
    [30]
    Kennedy R E , Yang Z , Cohen W B. Detecting trends in forest disturbance and recovery using yearly Landsat time series (1): LandTrendr: temporal segmentation algorithms[J]. Remote Sensing of Environment, 2010, 114(12): 2897−2910. doi: 10.1016/j.rse.2010.07.008
    [31]
    钟莉, 陈芸芝, 汪小钦. 基于Landsat时序数据的森林干扰监测[J]. 林业科学, 2020, 56(5): 80−88. doi: 10.11707/j.1001-7488.20200509

    Zhong L, Chen Y Z, Wang X Q. Forest disturbance monitoring based on time series of Landsat data[J]. Scientia Silvae Sincae, 2020, 56(5): 80−88. doi: 10.11707/j.1001-7488.20200509
    [32]
    Cohen W B, Yang Z, Kennedy R E. Detecting trends in forest disturbance and recovery using yearly Landsat time series (2): TimeSync-Tools for calibration and validation[J]. Remote Sensing of Environment, 2010, 114(12): 2911−2924. doi: 10.1016/j.rse.2010.07.010
    [33]
    Robert K , Zhiqiang Y , Noel G , et al. Implementation of the LandTrendr algorithm on Google Earth engine[J]. Remote Sensing, 2018, 10(5): 691.
    [34]
    Zhao L Z Z. Comparison of machine learning algorithms for forest parameter estimations and application for forest quality assessments[J]. Forest Ecology and Management, 2019, 434: 224-234.
    [35]
    Li W, Chen J, Zhang Z. Forest quality-based assessment of the Returning Farmland to Forest Program at the community level in SW China[J]. Forest Ecology and Management, 2020, 461: 117938. doi: 10.1016/j.foreco.2020.117938
    [36]
    Guo K, Wang B, Niu X. A review of research on forest ecosystem quality assessment and prediction methods[J]. Forests, 2023, 14(2): 317. doi: 10.3390/f14020317
    [37]
    王怀警, 谭炳香, 王晓慧, 等. 多分类器组合森林类型精细分类[J]. 遥感信息, 2019, 34(2): 104−112. doi: 10.3969/j.issn.1000-3177.2019.02.017

    Wang H J, Tan B X, Wang X H, et al. Multiple classifiers combination method for precise classification of forest type[J]. Remote Sensing Information, 2019, 34(2): 104−112. doi: 10.3969/j.issn.1000-3177.2019.02.017
    [38]
    Chen B Q, Cao J H, Wang J K, et al. Estimation of rubber stand age in typhoon and chilling injury afflicted area with Landsat TM data: a case study in Hainan Island, China[J]. Forest Ecology and Management, 2012, 274: 222−230. doi: 10.1016/j.foreco.2012.01.033
    [39]
    唐少飞, 田庆久, 徐凯健, 等. Sentinel-2卫星落叶松林龄信息反演[J]. 遥感学报, 2020, 24(12): 1511−1524.

    Tang S F, Tian Q J, Xu K J, et al. Age information retrieval of Larix gmelinii forest using Sentinel-2 data[J]. Journal of Remote Sensing (Chinese), 2020, 24(12): 1511−1524.
  • Related Articles

    [1]Guan Tianshuo, Wang Chunbo, Wang Wei, Yan Fei, Fan Yongxiang. Path planning method of mobile lidar in plantation sample plot survey[J]. Journal of Beijing Forestry University, 2024, 46(5): 154-162. DOI: 10.12171/j.1000-1522.20220273
    [2]Lü Jiaxin, Zhang Wuming, Zhou Zhongyan, Shao Jie. LiDAR based individual tree localization for sample plot inventory[J]. Journal of Beijing Forestry University, 2023, 45(1): 99-108. DOI: 10.12171/j.1000-1522.20220106
    [3]Zhang Jialong, Xu Hui. Establishment of remote sensing based model to estimate the aboveground biomass of Pinus densata for permanent sample plots from national forestry inventory[J]. Journal of Beijing Forestry University, 2020, 42(7): 1-11. DOI: 10.12171/j.1000-1522.20190394
    [4]GAO Jian, DU Fang, LI Jun-qing. Systematic position of Dipteronia dyerana inferred from eight gene regions[J]. Journal of Beijing Forestry University, 2017, 39(2): 24-29. DOI: 10.13332/j.1000-1522.20160127
    [5]ZHANG Yu-huan, ZHANG Qing, KANG Xin-gang, LI Yun, ZHANG Mu-bo, XU Guang, YANG Ying-jun. Methods for determining equilibrium curve of uneven-aged selection theropencedrymion—Taking sample plot data in Jingouling Forest Farm as a case[J]. Journal of Beijing Forestry University, 2015, 37(6): 53-60. DOI: 10.13332/j.1000-1522.20140229
    [6]LIU Xian-hao, LU Yuan-hang, MA Lú-yi, XUE Yang 3.. Estimation method of wood carbon storage at sacle of forest farm management unit.[J]. Journal of Beijing Forestry University, 2013, 35(5): 144-148.
    [7]ZHANG Gang-min, LIU Hong-mei, YANG Wen-li, ZHANG Xian-chun. Systematic position of Hemionitis arifolia based on the analysis of rbcL sequences[J]. Journal of Beijing Forestry University, 2009, 31(6): 15-18.
    [8]ZHU Xun-zhi, ZHANG Jin-tun. Improving the method of plotless sampling for forest community[J]. Journal of Beijing Forestry University, 2008, 30(1): 137-140.
    [9]LANG Pu-mei. Linear simultaneous equations models of stand growth based on the permanent sample plots[J]. Journal of Beijing Forestry University, 2007, 29(1): 37-41. DOI: 10.13332/j.1000-1522.2007.01.007
    [10]LI Chong-gui, ZHAO Xian-wen. Determining the optimum sample plots for establishing canopy density estimating equation in monitoring area[J]. Journal of Beijing Forestry University, 2005, 27(6): 24-28.
  • Cited by

    Periodical cited type(2)

    1. 周晓欢,曾凡玉,耿兴敏,许世达. 观赏植物多倍体育种研究进展. 中国野生植物资源. 2025(01): 88-93 .
    2. 刘劲松,谷得明,徐俊,许之扬,李硕,胡久荣. 赤霉素强化不同微藻处理技术对养猪废水中抗生素的去除效果研究. 环境污染与防治. 2024(09): 1245-1250+1257 .

    Other cited types(1)

Catalog

    Article views (624) PDF downloads (95) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return