Citation: | Li Hao, Wu Minghao, Zhan Fangzhi, Li Hongye, Zhang Xiang, Liu Zhicheng. A dynamic assessment framework of ecological networks coupled with Graphab-PLUS model: a case study in the central area of Beijing[J]. Journal of Beijing Forestry University, 2025, 47(1): 95-105. DOI: 10.12171/j.1000-1522.20230222 |
This study aimed to explore a framework for evaluating urban ecological networks that adapts to the dynamic development of cities and policy guidance, providing development guidance and forward-looking layout for the precise construction of ecological networks.
Taking the central urban area of Beijing as an example, based on land use data from two periods in 2005 and 2020, the PLUS model was used to simulate the land use in 2035 under three urban development scenarios. Graphab was used to calculate the landscape connectivity indicators of the ecological network under different scenarios, and a dynamic evaluation framework for the ecological network was constructed to clarify the problems and explore the direction of ecological construction in the central urban area.
(1) Under the overall planning development scenario, the expansion intensity of construction land was controlled, showing a trend of decentralized development, and the overall green space development status was good; under the urban expansion development scenario, construction land expanded strongly to surrounding land. (2) From 2005 to 2020, connectivity probability index (PC) in the central urban area decreased by 29.1%, and the urban ecological network degraded. The ecological network state under the overall planning development scenario improved significantly, with a PC increase of 62.6%; while the urban expansion scenario aggravated the trend of ecological degradation, with a PC decrease of 38.6%. (3) At individual level, the distribution of connectivity probability change index grades showed a pattern of high in the northwest and low in the southeast. Under the overall planning development scenario, the overall network structure tended to be complete, with an increase in the number of higher-level elements; under the urban expansion development scenario, the overall network structure became increasingly fragmented, and the degradation of element grades was significant. (4) On the dynamic evaluation framework, the central urban area tended to have low-base characteristics, and there were significant differences in network characteristics among districts.
The study explores the evaluation method of urban ecological networks by coupling the Graphab-PLUS model, constructs a three-dimensional dynamic evaluation framework of “basis-resilience-potentiality”, and provides a scientific basis for clarifying regional ecological development orientation and supporting territorial space planning. In addition, the study also proposes optimization suggestions for the ecological network of the central urban area: to make up for the regional ecological shortcomings as a whole and strengthen the ecological construction of the southeast area; in terms of zoning optimization, priority should be given to enhancing the overall function of ecological network in Haidian District, with a focus on protecting the ecological resources of Shijingshan District, and emphasizing the systematic construction of network elements in Dongcheng and Xicheng Districts.
[1] |
李晓文, 胡远满, 肖笃宁. 景观生态学与生物多样性保护[J]. 生态学报, 1999, 19(3): 111−119. doi: 10.3321/j.issn:1000-0933.1999.03.019
Li X W, Hu Y M, Xiao D N. Landscape ecology and biodiversity conservation[J]. Acta Ecologica Sinica, 1999, 19(3): 111−119. doi: 10.3321/j.issn:1000-0933.1999.03.019
|
[2] |
郑群明, 扈嘉辉, 申明智. 基于MSPA和MCR模型的湖南省生态网络构建[J]. 湖南师范大学自然科学学报, 2021, 44(5): 1−10.
Zheng Q M, Hu J H, Shen M Z. Construction of ecological network in Hunan Province based on MSPA and MCR models[J]. Journal of Natural Science of Hunan Normal University, 2021, 44(5): 1−10.
|
[3] |
周媛, 唐密, 陈娟, 等. 基于形态学空间格局分析与图谱理论的成都市绿地生态网络优化[J]. 生态学杂志, 2023, 42(6): 1527−1536.
Zhou Y, Tang M, Chen J, et al. Optimization of urban green space ecological network in Chengdu based on morphological spatial pattern analysis and graph theory[J]. Chinese Journal of Ecology, 2023, 42(6): 1527−1536.
|
[4] |
高娜, 姜雪, 郑曦. 基于生态系统服务的永定河流域北京段生态网络构建与优化[J]. 北京林业大学学报, 2022, 44(3): 106−118. doi: 10.12171/j.1000-1522.20200272
Gao N, Jiang X, Zheng X. Construction and optimization of ecological network in Beijing section of Yongding River Basin based on ecosystem services[J]. Journal of Beijing Forestry University, 2022, 44(3): 106−118. doi: 10.12171/j.1000-1522.20200272
|
[5] |
Tannier C, Foltête J C, Girardet X. Assessing the capacity of different urban forms to preserve the connectivity of ecological habitats[J]. Landscape and Urban Planning, 2012, 105(1−2): 128−139. doi: 10.1016/j.landurbplan.2011.12.008
|
[6] |
李豪, 吴明豪, 李虹烨, 等. 北京市朝阳区城市生态网络演变特征及优化研究[J]. 风景园林, 2023, 30(增刊2): 33−38. doi: 10.12409/j.fjyl.2023.S2.0033.06
Li H, Wu M H, Li H Y, et al. Evolution characteristics and optimization of urban ecological network in Chaoyang District, Beijing[J]. Landscape Architecture, 2023, 30(Suppl.2): 33−38. doi: 10.12409/j.fjyl.2023.S2.0033.06
|
[7] |
王博娅, 刘志成. 城市更新背景下北京市中心城区生态网络的优化策略[J]. 城市发展研究, 2022, 29(1): 113−120. doi: 10.3969/j.issn.1006-3862.2022.01.022
Wang B Y, Liu Z C. Study on the optimization strategy of ecological network in Beijing central area under the background of urban renewal[J]. Urban Development Studies, 2022, 29(1): 113−120. doi: 10.3969/j.issn.1006-3862.2022.01.022
|
[8] |
Taylor P D, Fahrig L, Henein K, et al. Connectivity is a vital element of landscape structure[J]. Oikos, 1993, 68(3): 571−573. doi: 10.2307/3544927
|
[9] |
李权荃, 金晓斌, 张晓琳, 等. 基于景观生态学原理的生态网络构建方法比较与评价[J]. 生态学报, 2023, 43(4): 1461−1473.
Li Q Q, Jin X B, Zhang X L, et al. Comparison and evaluation of the ecological network construction method based on principles of landscape ecology[J]. Acta Ecologica Sinica, 2023, 43(4): 1461−1473.
|
[10] |
黄梅, 刘晨曦, 俞晓莹, 等. 城市水生态网络韧性评价与优化策略: 以长沙市为例[J]. 经济地理, 2022, 42(10): 52−60.
Huang M, Liu C X, Yu X Y, et al. Resilience evaluation and optimization of urban water ecological network: take Changsha as an example[J]. Economic Geography, 2022, 42(10): 52−60.
|
[11] |
陈群, 刘平辉, 朱传民. 基于MCR模型的江西省抚州市生态安全格局构建[J]. 水土保持通报, 2022, 42(2): 210−218. doi: 10.3969/j.issn.1000-288X.2022.2.stbctb202202029
Chen Q, Liu P H, Zhu C M. Construction of an ecological security structure in Fuzhou City of Jiangxi Province based on an MCR model[J]. Bulletin of Soil and Water Conservation, 2022, 42(2): 210−218. doi: 10.3969/j.issn.1000-288X.2022.2.stbctb202202029
|
[12] |
王敏, 梁爽. 健康城市背景下太原市中心城区绿地生态网络规划[J]. 规划师, 2021, 37(4): 44−50, 56. doi: 10.3969/j.issn.1006-0022.2021.04.007
Wang M, Liang S. Health city oriented green space ecological network planning in central urban area of Taiyuan[J]. Planners, 2021, 37(4): 44−50, 56. doi: 10.3969/j.issn.1006-0022.2021.04.007
|
[13] |
孔阳, 王思元. 基于MSPA模型的北京市延庆区城乡生态网络构建[J]. 北京林业大学学报, 2020, 42(7): 113−121. doi: 10.12171/j.1000-1522.20190271
Kong Y, Wang S Y. Construction of urban and rural ecological network in Yanqing District of Beijing based on MSPA model[J]. Journal of Beijing Forestry University, 2020, 42(7): 113−121. doi: 10.12171/j.1000-1522.20190271
|
[14] |
丁成呈, 张敏, 束学超, 等. 多尺度的城市生态网络构建方法: 以合肥市主城区生态网络规划为例[J]. 规划师, 2021, 37(3): 35−43. doi: 10.3969/j.issn.1006-0022.2021.03.005
Ding C C, Zhang M, Shu X C, et al. Establishing multi-scale urban ecological network: Hefei case[J]. Planners, 2021, 37(3): 35−43. doi: 10.3969/j.issn.1006-0022.2021.03.005
|
[15] |
张文萍, 庄子薛, 谢梦晴, 等. 基于电路理论的多尺度城市热环境网络构建及格局优化: 以成都市中心城区为例[J]. 中国园林, 2023, 39(4): 103−108.
Zhang W P, Zhuang Z X, Xie M Q, et al. Construction and pattern optimization of multi-scale urban thermal environment network based on circuit theory: a case study of the central urban area of Chengdu[J]. Chinese Landscape Architecture, 2023, 39(4): 103−108.
|
[16] |
杨林哲, 牛腾, 于强, 等. 基于复杂网络理论的生态空间优化: 以松花江流域为例[J]. 北京林业大学学报, 2022, 44(9): 91−103. doi: 10.12171/j.1000-1522.20210475
Yang L Z, Niu T, Yu Q, et al. Ecological spatial optimization based on complex network theory: a case study of Songhua River Basin of northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(9): 91−103. doi: 10.12171/j.1000-1522.20210475
|
[17] |
宋利利, 秦明周, 张鹏岩, 等. 基于图论的景观图表达、分析及应用[J]. 应用生态学报, 2020, 31(10): 3579−3588.
Shong L L, Qin M Z, Zhang P Y, et al. Representation, analysis and application of landscape graph based on graph theory[J]. Chinese Journal of Applied Ecology, 2020, 31(10): 3579−3588.
|
[18] |
Tarabon S, Calvet C, Delbar V, et al. Integrating a landscape connectivity approach into mitigation hierarchy planning by anticipating urban dynamics[J]. Landscape and Urban Planning, 2020, 202: 103871. doi: 10.1016/j.landurbplan.2020.103871
|
[19] |
Urban D, Keitt T. Landscape connectivity: a graph-theoretic perspective[J]. Ecology, 2001, 82(5): 1205−1218. doi: 10.1890/0012-9658(2001)082[1205:LCAGTP]2.0.CO;2
|
[20] |
齐珂, 樊正球. 基于图论的景观连接度量化方法应用研究: 以福建省闽清县自然森林为例[J]. 生态学报, 2016, 36(23): 7580−7593.
Qi K, Fan Z Q. Evaluation method for landscape connectivity based on graph theory: a case study of natural forests in Minqing County, Fujian Province[J]. Acta Ecologica Sinica, 2016, 36(23): 7580−7593.
|
[21] |
梅泽文. 基于图论的滇金丝猴栖息地景观连通性动态研究[J]. 林业调查规划, 2018, 43(1): 52−56. doi: 10.3969/j.issn.1671-3168.2018.01.010
Mei Z W. Dynamic study on landscape connectivity of Rhinopithecus bieti habitats based on graph theory[J]. Forest Inventory and Planning, 2018, 43(1): 52−56. doi: 10.3969/j.issn.1671-3168.2018.01.010
|
[22] |
韩凌云, 徐振, 阮宏华, 等. 基于景观图论和生物能学的景观演变分析方法[J]. 生态学杂志, 2012, 31(6): 1597−1604.
Han L Y, Xu Z, Ruan H H, et al. An approach for tracing landscape change based on landscape graph and bioenergetics[J]. Chinese Journal of Ecology, 2012, 31(6): 1597−1604.
|
[23] |
李方正, 韩依纹, 李凤仪, 等. 北京市中心城土地利用变化及其对生境的影响(1992—2016)[J]. 中国园林, 2020, 36(3): 76−81.
Li F Z, Han Y W, Li F Y, et al. Evolution and effects of land use on habitat of Central Beijing (1992−2016)[J]. Chinese Landscape Architecture, 2020, 36(3): 76−81.
|
[24] |
Liang X, Guan Q, Clarke K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: a case study in Wuhan, China[J]. Computers, Environment and Urban Systems, 2021, 85: 101569. doi: 10.1016/j.compenvurbsys.2020.101569
|
[25] |
Liang X, Liu X, Li D, et al. Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model[J]. International Journal of Geographical Information Science, 2018, 32(11): 2294−2316. doi: 10.1080/13658816.2018.1502441
|
[26] |
詹芳芷, 田思月, 刘志成. 基于第二道绿隔规划的北京市平原区绿色空间土地利用多情景模拟与景观格局研究[J]. 城市发展研究, 2023, 30(1): 26−34. doi: 10.3969/j.issn.1006-3862.2023.01.005
Zhan F Z, Tian S Y, Liu Z C. Study on land use simulation and landscape pattern of green space in plain area of Beijing based on the second green belt planning[J]. Urban Development Studies, 2023, 30(1): 26−34. doi: 10.3969/j.issn.1006-3862.2023.01.005
|
[27] |
李琛, 高彬嫔, 吴映梅, 等. 基于PLUS模型的山区城镇景观生态风险动态模拟[J]. 浙江农林大学学报, 2022, 39(1): 84−94.
Li C, Gao B P, Wu Y M, et al. Dynamic simulation of landscape ecological risk in mountain towns based on PLUS model[J]. Journal of Zhejiang A&F University, 2022, 39(1): 84−94.
|
[28] |
Foltête J C, Clauzel C, Vuidel G. A software tool dedicated to the modelling of landscape networks[J]. Environmental Modelling & Software, 2012, 38: 316−327.
|
[29] |
Saura S, Pascual-Hortal L. A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study[J]. Landscape and Urban Planning, 2007, 83(2): 91−103.
|
[30] |
Saura S, Rubio L. A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape[J]. Ecography, 2010, 33(3): 523−537. doi: 10.1111/j.1600-0587.2009.05760.x
|
[31] |
李成, 谢锋, 车静, 等. 中国关键地区两栖爬行动物多样性监测与研究[J]. 生物多样性, 2017, 25(3): 246−254. doi: 10.17520/biods.2016137
Li C, Xie F, Che J, et al. Monitoring and research of amphibians and reptiles diversity in key areas of China[J]. Biodiversity Science, 2017, 25(3): 246−254. doi: 10.17520/biods.2016137
|
[32] |
史娜娜, 郭宁宁, 刘高慧, 等. 北京市两栖爬行动物空间分布格局及影响因素研究[J]. 生态学报, 2022, 42(9): 3806−3821.
Shi N N, Guo N N, Liu G H, et al. Spatial distribution pattern and influencing factors of amphibians and reptiles in Beijing[J]. Acta Ecologica Sinica, 2022, 42(9): 3806−3821.
|
[33] |
张利, 何玲, 闫丰, 等. 基于图论的两栖类生物栖息地网络规划: 以黑斑侧褶蛙为例[J]. 应用生态学报, 2021, 32(3): 1054−1060.
Zhang L, He L, Yan F, et al. Amphibian habitat network planning based on the graph theory: a case study of Pelophylax nigromaculata[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 1054−1060.
|
[34] |
Grafton R Q, Doyen L, Béné C, et al. Realizing resilience for decision-making[J]. Nature Sustainability, 2019, 2(10): 907−913. doi: 10.1038/s41893-019-0376-1
|
[35] |
Li H, Chen H Y, Wu M H, et al. A dynamic evaluation method of urban ecological networks combining graphab and the FLUS model[J]. Land, 2022, 11(12): 2297. doi: 10.3390/land11122297
|
[36] |
薛飞, 张念慈, 夏楚瑜, 等. 城市生态韧性水平空间评估及其驱动力: 以北京市通州区为例[J]. 生态学报, 2023, 43(16): 6810−6823.
Xue F, Zhang N C, Xia C Y, et al. Spatial evaluation of urban ecological resilience and analysis of driving forces: a case study of Tongzhou District, Beijing[J]. Acta Ecologica Sinica, 2023, 43(16): 6810−6823.
|
[37] |
Wang Y X, Yu X H, Zhao B J, et al. Evaluation of ecological carrying capacity in Yangtze River Economic Belt and analysis of its spatial pattern evolution[J]. Ecological Indicators, 2022, 144: 109535. doi: 10.1016/j.ecolind.2022.109535
|
[38] |
Duflot R, Avon C, Roche P, et al. Combining habitat suitability models and spatial graphs for more effective landscape conservation planning: an applied methodological framework and a species case study[J]. Journal for Nature Conservation, 2018, 46: 38−47. doi: 10.1016/j.jnc.2018.08.005
|
[1] | Zou Xuge, Wang Yin, Wang Jianming, Qu Mengjun, Zhu Weilin, Zhao Hang, Si Jianhua, Li Jingwen. Coordination and trade-off of leaf functional traits in Populus euphratica and their response to tree age and soil factors[J]. Journal of Beijing Forestry University, 2024, 46(5): 82-92. DOI: 10.12171/j.1000-1522.20220522 |
[2] | Zhang Yue, Tian Qing, Huang Rong. Responses of typical plant functional traits among summer-flowering tree species in heterogeneous city habitats in Lanzhou City of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 90-99. DOI: 10.12171/j.1000-1522.20210476 |
[3] | Zhang Rishi, Huang Zhenge, He Bin, Xie Minyang, Zhou Gang, Wei Mingbao. Biomass accumulation and productivity changes of Taiwania flousiana plantation at different age stages in northwestern Guangxi, southern China[J]. Journal of Beijing Forestry University, 2021, 43(11): 20-27. DOI: 10.12171/j.1000-1522.20200107 |
[4] | Ren Hao, Gao Guoqiang, Ma Yaoyuan, Li Zuwang, Gu Jiacun. Root nitrogen uptake and its relationship with root morphological and chemical traits in Pinus koraiensis at different ages[J]. Journal of Beijing Forestry University, 2021, 43(10): 65-72. DOI: 10.12171/j.1000-1522.20200385 |
[5] | YAN Bo-qian, LIN Wan-zhong, LIU Qi-jing, YU Jian. Age-dependent radial growth responses of Larix chinensis to climatic factors in Qinling Mountains, northwestern China[J]. Journal of Beijing Forestry University, 2017, 39(9): 58-65. DOI: 10.13332/j.1000-1522.20170161 |
[6] | YANG Li-xue, WANG Hai-nan, FAN Jing. Effects of donor tree ages and plant growth regulators on the softwood cutting propagation of Hippophae rhamnoides[J]. Journal of Beijing Forestry University, 2011, 33(6): 107-111. |
[7] | HU Yun-yun, KANG Xin-gang, GAO Yan, FENG Qi-xiang, YAO Jing-chun3, WANG Zhuo-hui. Variation of tree age for natural spruce-fir-broadleaved forests and estimation precision.[J]. Journal of Beijing Forestry University, 2011, 33(4): 22-27. |
[8] | XING Mei-jun, YANG Gang, HUANG Xin-yuan, WANG Zhong-zhi. Defining physiological age of plant organs[J]. Journal of Beijing Forestry University, 2010, 32(4): 181-185. |
[9] | HOU Zheng-yang, , XU Qing, FENG Zhong-ke. New framework of forest management in the new age.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 300-305. |
[10] | ZHOU Dan-hui, HE Hong-shi, LI Xiu-zhen, ZHOU Chun-hua, WANG Xu-gao, CHEN Hong-wei. Potential responses of different stand age classes to climate changes in the Xiaoxinganling Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2007, 29(4): 110-117. DOI: 10.13332/j.1000-1522.2007.04.024 |