Citation: | Zou Xuge, Wang Yin, Wang Jianming, Qu Mengjun, Zhu Weilin, Zhao Hang, Si Jianhua, Li Jingwen. Coordination and trade-off of leaf functional traits in Populus euphratica and their response to tree age and soil factors[J]. Journal of Beijing Forestry University, 2024, 46(5): 82-92. DOI: 10.12171/j.1000-1522.20220522 |
This study aims to investigate the characteristics and influencing factors of leaf functional traits of Populus euphratica at different tree ages. Additionally, it aims to explore the intraspecific variation and adaptation characteristics of leaf functional tarits. The findings of this study aim to establish a theoretical basis for protection and management of P. euphratica.
In this study, P. euphratica trees of different tree ages were selected as research object, and the changes in leaf morphology, photosynthetic physiology, nutrient traits and their responses to tree age and soil factors were studied by means of correlation analysis and variance decomposition.
With the increase of tree age, leaf dry matter content, chlorophyll a content, chlorophyll b content, total chlorophyll content, leaf carbon content, leaf nitrogen content, and leaf phosphorus content increased, while specific leaf area and leaf thickness decreased. There was a certain correlation between the leaf functional traits, in which chlorophyll a content, chlorophyll b content and total chlorophyll content were significantly positively correlated with leaf dry matter content, leaf carbon content, leaf nitrogen content, and leaf phosphorus content, negatively correlated with specific leaf area and leaf thickness, and the relationship between traits was regulated by tree age. The specific leaf area, leaf dry matter content, chlorophyll a content, chlorophyll b content, leaf carbon content, leaf nitrogen content and leaf phosphorus content were mainly affected by tree age and soil pH, and leaf thickness and total chlorophyll content were mainly affected by tree age and soil total nitrogen content. It showed that tree age, soil pH and soil total nitrogen content were the main influencing factors of leaf functional traits, and compared with soil factors, tree age had a higher explanation rate for the variation of leaf functional traits, which could explain 15.1%−38.1% of the variation.
With the increase of tree age, P. euphratica adapts to environmental changes through certain trait variations and trait combinations, and the influencing factors of leaf functional traits are different. Among them, tree age and soil factors jointly regulate the change of leaf functional traits, and tree age may play a more critical role in determining the variation of leaf functional traits in P. euphratica.
[1] |
戚德辉, 温仲明, 杨士梭, 等. 基于功能性状的铁杆蒿对环境变化的响应与适应[J]. 应用生态学报, 2015, 26(7): 1921−1927.
Qi D H, Wen Z M, Yang S S, et al. Trait-based responses and adaptation of Artemisia sacrorum to environmental changes[J]. Chinese Journal of Applied Ecology, 2015, 26(7): 1921−1927.
|
[2] |
Rozendaal D M A, Hurtdo V H, Poorter L. Plasticity in leaf traits of 38 tropical tree species in response to light: relationships with light demand and adult stature[J]. Functional Ecology, 2006, 20(2): 207−216. doi: 10.1111/j.1365-2435.2006.01105.x
|
[3] |
孙梅, 田昆, 张贇, 等. 植物叶片功能性状及其环境适应研究[J]. 植物科学学报, 2017, 35(6): 940−949.
Sun M, Tian K, Zhang Y, et al. Research on leaf functional traits and their environmental adaptation[J]. Plant Science Journal, 2017, 35(6): 940−949.
|
[4] |
庞世龙, 欧芷阳, 申文辉, 等. 桂西南喀斯特地区优势木本经济植物叶功能性状变异及其适应策略[J]. 广西植物, 2021, 41(5): 707−714.
Pang S L, Ou Z Y, Shen W H, et al. Leaf function traits variations and adaptive strategies of dominant woody economic plants in karst area of Southwest Guangxi[J]. Guihaia, 2021, 41(5): 707−714.
|
[5] |
Fajardo A, Siefert A. Intraspecific trait variation and the leaf economics spectrum across resource gradients and levels of organization[J]. Ecology, 2018, 99(5): 1024−1030. doi: 10.1002/ecy.2194
|
[6] |
Sun L, Wang H F, Cai Y, et al. Disentangling the interspecific and intraspecific variation in functional traits of desert plant communities under different moisture gradients[J]. Forests, 2022, 13(7): 1088. doi: 10.3390/f13071088
|
[7] |
段媛媛, 宋丽娟, 牛素旗, 等. 不同林龄刺槐叶功能性状差异及其与土壤养分的关系[J]. 应用生态学报, 2017, 28(1): 28−36.
Duan Y Y, Song L J, Niu S Q, et al. Variation in leaf functional traits of different-aged Robinia pseudoacacia and relationships with soil nutrients[J]. Chinese Journal of Applied Ecology, 2017, 28(1): 28−36.
|
[8] |
Wright I J, Reich P B, Westoby M, et al. The world-wide leaf economics spectrum[J]. Nature, 2004, 428: 821−827. doi: 10.1038/nature02403
|
[9] |
王雪梅, 闫帮国, 史亮涛, 等. 车桑子幼苗生物量分配与叶性状对氮磷浓度的响应差异[J]. 植物生态学报, 2020, 44(12): 1247−1261. doi: 10.17521/cjpe.2020.0199
Wang X M, Yan B G, Shi L T, et al. Different responses of biomass allocation and leaf traits of Dodonaea viscosa to concentrations of nitrogen and phosphorus[J]. Chinese Journal of Plant Ecology, 2020, 44(12): 1247−1261. doi: 10.17521/cjpe.2020.0199
|
[10] |
刘思文, 艾也博, 刘艳红. 北京松山油松叶功能性状沿海拔梯度的变化及其环境解释[J]. 北京林业大学学报, 2021, 43(4): 47−55.
Liu S W, Ai Y B, Liu Y H. Variations in leaf functional traits along the altitude gradient of Pinus tabuliformis and its environmental explanations in Beijing Songshan Mountain[J]. Journal of Beijing Forestry University, 2021, 43(4): 47−55.
|
[11] |
Wang Z H, Townsend P A, Kruger E L. Leaf spectroscopy reveals divergent inter-and intra-species foliar trait covariation and trait-environment relationships across NEON domains[J]. New Phytologist, 2022, 235: 923−938. doi: 10.1111/nph.18204
|
[12] |
Liu Z L, Jiang F, Li F R, et al. Coordination of intra and inter-species leaf traits according to leaf phenology and plant age for three temperate broadleaf species with different shade tolerances[J]. Forest Ecology and Management, 2019, 434: 63−75. doi: 10.1016/j.foreco.2018.12.008
|
[13] |
Valladares F, Niinemets U. Shade tolerance, a key plant feature of complex nature and consequences[J]. Annual Review of Ecology, Evolution and Systematics, 2008, 39: 237–257.
|
[14] |
Martin A R, Thomas S C. Size-dependent changes in leaf and wood chemical traits in two Caribbean rainforest trees[J]. Tree Physiology, 2014, 33(12): 1338−1353.
|
[15] |
Liu F D, Yang W J, Wang Z S, et al. Plant size effects on the relationships among specific leaf area, leaf nutrient content, and photosynthetic capacity in tropical woody species[J]. Acta Oecologica-International Journal of Ecology, 2010, 36(2): 149−159. doi: 10.1016/j.actao.2009.11.004
|
[16] |
Keyimu M, Halik Ü, Betz F, et al. Vitality variation and population structure of a riparian in the lower reaches of the Tarim River, NW China[J]. Journal of Forestry Research, 2018, 29: 749−760. doi: 10.1007/s11676-017-0478-4
|
[17] |
王晶, 殷飞, 林宁. 叶尔羌河流域荒漠河岸林胡杨叶片和凋落叶的生态化学计量特征[J]. 植物资源与环境学报, 2021, 30(5): 42−49. doi: 10.3969/j.issn.1674-7895.2021.05.05
Wang J, Yin F, Lin N. Ecological stoichiometric characteristics of leaf of Populus euphratica from desert riparian forest in Yarkant River Basin[J]. Journal of Plant Resources and Environment, 2021, 30(5): 42−49. doi: 10.3969/j.issn.1674-7895.2021.05.05
|
[18] |
王希义, 徐海量, 潘存德, 等. 塔里木河下游珍稀濒危植物胡杨的种群生存特征研究[J]. 西北植物学报, 2017, 37(11): 2282−2289. doi: 10.7606/j.issn.1000-4025.2017.11.2282
Wang X Y, Xu H L, Pan C D, et al. Population survival characteristics of Populus euphratica which is rare and endangered in the lower reaches of Tarim River[J]. Acta Botanica Sinica of Northwest China, 2017, 37(11): 2282−2289. doi: 10.7606/j.issn.1000-4025.2017.11.2282
|
[19] |
张肖, 吕瑞恒, 梁继业, 等. 胡杨生殖构件空间分布特征及其养分动态分析[J]. 干旱区研究, 2017, 34(1): 95−103.
Zhang X, Lü R H, Liang J Y, et al. Spatial distribution of reproductive shoots and dynamic change of nutrient contents of Populus euphratica[J]. Arid Zone Research, 2017, 34(1): 95−103.
|
[20] |
李端, 司建华, 张小由, 等. 胡杨(Populus euphratica)对干旱胁迫的生态适应[J]. 中国沙漠, 2020, 40(2): 17−23.
Li D, Si J H, Zhang X Y, et al. Ecological adaptation of Populus euphratica to drought stress[J]. Journal of Desert Research, 2020, 40(2): 17−23.
|
[21] |
热孜也木·阿布力孜, 玉米提·哈力克, 塔依尔江·艾山, 等. 塔里木河下游胡杨叶片性状特征及其对水分胁迫的响应[J]. 东北林业大学学报, 2019, 47(5): 46−51. doi: 10.3969/j.issn.1000-5382.2019.05.010
Reziya Abulizi, Umut Halik, Tayierjiang Aishan, et al. Leaf characteristics of Populus euphratica and its response to water stress in the lower reaches of Tarim River[J]. Journal of Northeast Forestry University, 2019, 47(5): 46−51. doi: 10.3969/j.issn.1000-5382.2019.05.010
|
[22] |
温云梦. 不同地下水埋深下胡杨叶片色素及光谱变化特征分析[D]. 阿拉尔: 塔里木大学, 2022.
Wen Y M. Characterization of pigment and spectral changes of poplar leaves under different groundwater depths of groundwater burial[D]. Aral: Tarim University, 2022.
|
[23] |
Wang L L, Zhao G X, Li M, et al. C∶N∶P stoichiometry and leaf traits of halophytes in an arid saline environment, Northwest China[J]. PLoS One, 2015, 10(3): 1−16.
|
[24] |
Zhang X L, Zhou J H, Guan T Y, et al. Spatial variation in leaf nutrient of dominant desert riparian plant species in an arid inland river basin of China[J]. Ecology and Evolution, 2019, 9(3): 1523−1531. doi: 10.1002/ece3.4877
|
[25] |
曹生奎, 冯起, 司建华, 等. 荒漠河岸林胡杨养分状况研究[J]. 中国沙漠, 2011, 31(5): 1131−1140.
Cao S K, Feng Q, Si J H, et al. Status of foliar nutrients in Populus euphratica desert riparian forest in northwestern China[J]. Journal of Desert Research, 2011, 31(5): 1131−1140.
|
[26] |
王文娟, 吕慧, 钟悦鸣, 等. 胡杨异形叶性状与其个体发育的关系[J]. 北京林业大学学报, 2019, 41(2): 62−69.
Wang W J, Lü H, Zhong Y M, et al. Relationship between heteromorphic leaf traits of Populus euphratica and its individual development[J]. Journal of Beijing Forestry University, 2019, 41(2): 62−69.
|
[27] |
单凌飞, 丁颖慧, 王双蕾, 等. 胡杨不同发育阶段叶片光合作用及其光响应特征[J]. 生态科学, 2019, 38(6): 22−29.
Shan L F, Ding Y H, Wang S L, et al. Leaf photosynthesis and light response characteristics of Populus euphratica in different developmental stages[J]. Ecological Science, 2019, 38(6): 22−29.
|
[28] |
庞志强, 卢炜丽, 姜丽莎, 等. 滇中喀斯特41种不同生长型植物叶性状研究[J]. 广西植物, 2019, 39(8): 1126−1138.
Pang Z Q, Lu W L, Jiang L S, et al. Leaf traits of different growing plants in karst area of Shilin, China[J]. Guihaia, 2019, 39(8): 1126−1138.
|
[29] |
Kenozo T, Inoue Y, Yoshimura M, et al. Height-realted changes in leaf photosynthetic in diverse Bornean tropical rain forest trees[J]. Oecologia, 2015, 177: 191−202. doi: 10.1007/s00442-014-3126-0
|
[30] |
Liao L C, Jiang H, Long W X, et al. Leaf functional traits are related to tree size and location in cotton trees Bombax malabaricum[J]. Tropical Conservation Science, 2020, 13: 1−9.
|
[31] |
Shao Q S, Wang H Z, Guo H P, et al. Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii[J]. PLoS One, 2014, 9(2): e85996. doi: 10.1371/journal.pone.0085996
|
[32] |
翟占伟, 龚吉蕊, 罗亲普, 等. 氮添加对内蒙古温带草原羊草光合特性的影响[J]. 植物生态学报, 2017, 41(2): 196−208. doi: 10.17521/cjpe.2016.0128
Zhai Z W, Gong J R, Luo Q P, et al. Effects of nitrogen addition on photosynthetic characteristics of Leymus chinensis in temperate grassland of Nei Mongol, China[J]. Chinese Journal of Plant Ecology, 2017, 41(2): 196−208. doi: 10.17521/cjpe.2016.0128
|
[33] |
冯秋红, 史作民, 董莉莉, 等. 南北样带温带区栎属树种功能性状间的关系及其对气象因子的响应[J]. 植物生态学报, 2010, 34(6): 619−627. doi: 10.3773/j.issn.1005-264x.2010.06.001
Feng Q H, Shi Z M, Dong L L, et al. Relationships among functional traits of Quercus species and their response to meteorological factors in temperate zone of North-South transect of eastern China[J]. Chinese Journal of Plant Ecology, 2010, 34(6): 619−627. doi: 10.3773/j.issn.1005-264x.2010.06.001
|
[34] |
何斌, 李青, 冯图, 等. 不同林龄马尾松人工林针叶功能性状及其与土壤养分的关系[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 181−190.
He B, Li Q, Feng T, et al. Variation in leaf functional traits of different-aged Pinus massoniana communities and relationships with soil nutrients[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(2): 181−190.
|
[35] |
石义强, 热孜也木·阿布力孜, 玉米提·哈力克, 等. 胡杨叶功能性状差异及其与树形因子的关系[J]. 森林与环境学报, 2023, 43(1): 1−7.
Shi Y Q, Reziya Abulizi, Umut Halik, et al. Diffenences in leaf functional traits of Populus euphratica at different growth stages and its relationship with tree shape factors[J]. Journal of Forest and Environment, 2023, 43(1): 1−7.
|
[36] |
李耀琪, 王志恒. 植物叶片形态的生态功能、地理分布与成因[J]. 植物生态学报, 2021, 45(10): 1154−1172. doi: 10.17521/cjpe.2020.0405
Li Y Q, Wang Z H. Leaf morphological traits: ecological function, geographic distribution and gdrivers[J]. Chinese Journal of Plant Ecology, 2021, 45(10): 1154−1172. doi: 10.17521/cjpe.2020.0405
|
[37] |
周丽丽, 钱瑞玲, 李树斌, 等. 滨海沙地主要造林树种叶片功能性状及养分重吸收特征[J]. 应用生态学报, 2019, 30(7): 2320−2328.
Zhou L L, Qian R L, Li S B, et al. Leaf functional traits and nutrient resorption among major silviculture tree species in coastal sandy site[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2320−2328.
|
[38] |
胡耀升, 么旭阳, 刘艳红. 长白山不同演替阶段森林植物功能性状及其与地形因子间的关系[J]. 生态学报, 2014, 34(20): 5915−5924.
Hu Y S, Yao X Y, Liu Y H. The functional traits of forests at different succession stages and their relationship to terrain factors in Changbai Mountains[J]. Acta Ecologica Sinica, 2014, 34(20): 5915−5924.
|
[39] |
王敬哲, 陈志强, 陈志彪, 等. 南方红壤侵蚀区不同植被恢复年限下芒萁叶功能性状对土壤因子的响应[J]. 生态学报, 2020, 40(3): 900−909.
Wang J Z, Chen Z Q, Chen Z B, et al. Response of functional traits of Dicranopteris dichotoma leaves to soil factors in different vegetation restoration years in red soil erosion area of southern China[J]. Acta Ecologica Sinica, 2020, 40(3): 900−909.
|
[40] |
Lusk C H, Reich P B, Montgomery R A, et al. Why are evergreen leaves so contray about shade?[J]. Trends in Ecology & Evolution, 2008, 23(6): 299−303.
|
[41] |
Poorter H, Niinemets U, Poorter L, et al. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis[J]. New Phytologist, 2009, 182(3): 565−588. doi: 10.1111/j.1469-8137.2009.02830.x
|
[42] |
苏文华, 施展, 杨波, 等. 滇石栎沿纬度梯度叶片功能性状的种内变化[J]. 植物分类与资源学报, 2015, 37(3): 309−317.
Su W H, Shi Z, Yang B, et al. Intraspecific functional trait variation in a tree species (Lithocarpus dealbatus) along latitude[J]. Plant Diversity and Resources, 2015, 37(3): 309−317.
|
[43] |
蔡海霞, 吴福忠, 杨万勤. 干旱胁迫对高山柳和沙棘幼苗光合生理特征的影响[J]. 生态学报, 2011, 31(9): 2430−2436.
Cai H X, Wu F Z, Yang W Q. Effects of drough stress on the photosynthetisis of Salix paraqplesia and Hippophae rhamnoides seedlings[J]. Acta Ecologica Sinica, 2011, 31(9): 2430−2436.
|
[44] |
杨克彤, 陈国鹏. 红豆杉幼树异龄叶的功能性状[J]. 应用生态学报, 2022, 33(2): 329−336.
Yang K T, Chen G P. Functional traits of leaves with different ages of Taxus wallichiana var. chinensis saplings[J]. Chinese Journal of Applied Ecology, 2022, 33(2): 329−336.
|
[45] |
冷芬, 杨在君, 吴一超, 等. 土壤pH值对何首乌生理及其光合特性和有效成分含量的影响[J]. 西北植物学报, 2020, 40(9): 1566−1573. doi: 10.7606/j.issn.1000-4025.2020.09.1566
Leng F, Yang Z J, Wu Y C, et al. Physiological and photosynthetic characteristics and active component content of Polygonum multiflorum Thunb. under different soil pH values[J]. Acta Botanica Sinica of Northwest China, 2020, 40(9): 1566−1573. doi: 10.7606/j.issn.1000-4025.2020.09.1566
|
[46] |
王琇瑜, 黄晓霞, 和克俭, 等. 滇西北高寒草甸植物群落功能性状与土壤理化性质的关系[J]. 草业学报, 2020, 29(8): 6−17. doi: 10.11686/cyxb2019473
Wang X Y, Huang X X, He K J, et al. The relationship between plant functional traits and soil physicochemical properties in alpine meadows in Northwestern Yunnan Province, China[J]. Acta Prataculturae Sinica, 2020, 29(8): 6−17. doi: 10.11686/cyxb2019473
|
[47] |
李维, 向芬, 周凌云, 等. 氮素减施对茶树光合作用和氮肥利用率的影响[J]. 生态学杂志, 2020, 39(1): 93−98.
Li W, Xiang F, Zhou L Y, et al. Effects of nitrogen fertilizer reduction on photosynthesis and nitrogen use efficiency in tea plants[J]. Chinese Journal of Ecology, 2020, 39(1): 93−98.
|
[48] |
王萌, 徐冰, 张大勇, 等. 内蒙古克氏针茅草地主要植物叶片功能性状对氮素添加的响应[J]. 北京师范大学学报(自然科学版), 2016, 52(1): 32−38.
Wang M, Xu B, Zhang D Y, et al. Leaf functional trait response to nitrogen addition of abundant species in an Inner Mongolia stipa steppe[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(1): 32−38.
|
[49] |
林婉奇, 蔡金桓, 薛立. 不同密度樟树(Cinnamomum camphora)幼苗生长和叶片性状对氮磷添加的响应[J]. 生态学报, 2019, 39(18): 6738−6744.
Lin W Q, Cai J H, Xue L. Responses of Cinnamomum camphora seedling growth and leaf traits to additions of nitrogen and phosphorus under different densities[J]. Acta Ecologica Sinica, 2019, 39(18): 6738−6744.
|
[50] |
Smith E A, Collette S B, Boynton T A, et al. Developmental contributions to phenotypic variation in functional leaf traits within quaking aspen clones[J]. Tree Physiology, 2011, 31(1): 68−77. doi: 10.1093/treephys/tpq100
|
[51] |
Damián X, Fornoni J, Domínguez C A, et al. Ontogenetic changes in the phenotypic integration and modularity of leaf functional traits[J]. Functional Ecology, 2018, 32(2): 234−246. doi: 10.1111/1365-2435.12971
|
[52] |
Song Z P, Liu Y H, Su H X, et al. N-P utilization of Acer mono leaves at different life history stages across altitudinal gradients[J]. Ecology and Evolution, 2019, 10: 1−12. doi: 10.1111/2041-210X.13044
|
[53] |
Henn J J, Danmschen E I. Plant age affects intraspecific variation in functional traits[J]. Plant Ecology, 2021, 222(6): 669−680. doi: 10.1007/s11258-021-01136-2
|
[1] | Wen Wenjie, Zhang Jianjun, Li Yixuan, Huang Xiaoqing, He Pei. A simple method for estimating runoff sediment concentration[J]. Journal of Beijing Forestry University, 2019, 41(11): 155-162. DOI: 10.13332/j.1000-1522.20180246 |
[2] | Guo Yingli, Zhang Shouhong, Chen Mingxiu, Anaer, Jiang Yuchen, Cao Shuning, Xie Chaoshuai. Experimental study on runoff control performances for impervious area disconnection system of sandy loam soil green space in West Mountains of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(6): 111-119. DOI: 10.13332/j.1000-1522.20180262 |
[3] | Gao Shumin, Yang Muhan, Zhu Yuanyuan, Zhou Yan. Role of CMLs in regulating the competition of plant pollen pollination[J]. Journal of Beijing Forestry University, 2019, 41(3): 143-150. DOI: 10.13332/j.1000-1522.20180375 |
[4] | YANG Gui-yan, ZHAO Zhen, ZHAO Yu-lin, ZHANG Feng-jiao, GAO Cai-qiu. Upstream regulators of ThVHAc1.[J]. Journal of Beijing Forestry University, 2015, 37(12): 1-6. DOI: 10.13332/j.1000-1522.20140486 |
[5] | GAO Qiong, NIU Shi-hui, LI Wei, CHEN Xiao-yang. Regulation of low temperature stress on gibberellin metabolism[J]. Journal of Beijing Forestry University, 2014, 36(6): 135-141. DOI: 10.13332/j.cnki.jbfu.2014.06.025 |
[6] | DU Yu-liang, CHEN Ye, LIU Cai-hong, YIN Zeng-fang. Molecular regulation mechanism of vascular pattern formation in plant[J]. Journal of Beijing Forestry University, 2014, 36(3): 142-150. DOI: 10.13332/j.cnki.jbfu.2014.03.023 |
[7] | KONG Ying, SUN Ming, PAN Hu-tang, ZHANG Qi-xiang. Advances in metabolism and regulation of floral scent.[J]. Journal of Beijing Forestry University, 2012, 34(2): 146-154. |
[8] | SUN Qing-yan, YU Xin-xiao, HU Shu-ping, XIAO Yang. SWAT model-based runoff simulation in Banchengzi Reservoir Catchment,Beijing[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 148-154. |
[9] | SUN Jing-shuang, ZHENG Hong-juan, JIA Gui-xia, SUN Chang-zhong, WEN Lei. Effects of different substrates, growth regulators, grades of cuttings and metabolism regulator on cutting propagation of Juniperus squamata‘Blue Star’[J]. Journal of Beijing Forestry University, 2008, 30(1): 67-73. |
[10] | LI Fa-dong, SONG Xian-fang, LIU Chang-ming, YU Jing-jie, YANG Cong, LIU Xiang-chao, HU Kun, TANG Chang-yuan. Discharge recession from runoff plots in representative mountain area in North China[J]. Journal of Beijing Forestry University, 2006, 28(2): 79-84. |
1. |
谢微,尹若勇,温梦玲,张宝津,邓小梅. 诗琳通木兰对干旱胁迫的生理响应. 林业与环境科学. 2025(01): 111-118 .
![]() | |
2. |
冯柳俊,陈志强,陈志彪,罗立津,王健. 南方红壤侵蚀区芒萁对聚乙二醇6000模拟干旱胁迫的响应. 安徽农业科学. 2023(20): 66-69+108 .
![]() | |
3. |
梁青兰,韩友吉,乔艳辉,谢孔安,李双云,董玉峰,李善文,张升祥. 干旱胁迫对黑杨派无性系生长及生理特性的影响. 北京林业大学学报. 2023(10): 81-89 .
![]() | |
4. |
张忠辉,王文涛,包广道,刘婷,罗也,刘志越. 我国杨树抗旱性研究进展. 吉林林业科技. 2023(06): 35-41 .
![]() | |
5. |
苑正赛,乔艳辉,王丽,王相娥,姚俊修,李善文,韩友吉,董玉峰. 镉胁迫对黑杨派无性系生物量及镉离子含量的影响. 北京林业大学学报. 2021(12): 38-46 .
![]() | |
6. |
黄海霞,连转红,王亮,杨琦琦,魏振艳,马彦军,张金霞. 裸果木渗透调节物质和抗氧化酶活性对干旱的响应. 干旱区研究. 2020(01): 227-235 .
![]() | |
7. |
姚俊修,乔艳辉,杨庆山,仲伟国,李庆华,董玉峰,李善文,吴德军. 重金属镉胁迫对黑杨派无性系光合生理及生长的影响. 西北林学院学报. 2020(02): 40-46+107 .
![]() | |
8. |
姚俊修,陈甘牛,李善文,乔艳辉,仲伟国,李庆华,董玉峰,吴德军. 镉胁迫对黑杨派无性系生理生化特性及生长的影响. 北京林业大学学报. 2020(04): 12-20 .
![]() | |
9. |
郑涛,樊军锋,高建社,周永学. 美洲黑杨无性系抗旱性综合评价研究. 西北林学院学报. 2019(02): 98-104 .
![]() | |
10. |
郑涛,樊军锋,高建社,周永学. 11个白杨派无性系抗旱性综合评价. 西北林学院学报. 2019(04): 101-106 .
![]() | |
11. |
张文婷,王子邦. 6种常见彩叶灌木对干旱胁迫的生理响应. 江苏农业科学. 2018(08): 123-126 .
![]() | |
12. |
王曦,胡红玲,胡庭兴,张城浩,王鑫,刘丹. 干旱胁迫对桢楠幼树渗透调节与活性氧代谢的影响及施氮的缓解效应. 植物生态学报. 2018(02): 240-251 .
![]() | |
13. |
苏丹,殷小琳,董智,慕德宇,张晓晓,贾淑友. 白榆无性系生长特性及离子分布对NaCl胁迫的响应. 北京林业大学学报. 2017(05): 48-57 .
![]() | |
14. |
杨传宝,孙超,李善文,姚俊修,刘敬国,矫兴杰. 白杨派无性系苗期耐盐性综合评价及筛选. 北京林业大学学报. 2017(10): 24-32 .
![]() | |
15. |
邓辉茗,龙聪颖,蔡仕珍,苏明洁,王小梅. PEG-6000模拟干旱协迫对大蓟叶片生理特性的影响. 西北植物学报. 2017(05): 959-964 .
![]() | |
16. |
崔博文,乔光,范付华,丁贵杰,文晓鹏. 不同种源马尾松种质耐低磷的主成分与灰色关联度分析. 西南大学学报(自然科学版). 2017(08): 49-56 .
![]() |