• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Chen Ling, Zhu Kun, Peng Zuodeng, Xiong Jianjun, Li Shuwen. Effects of short-term application of sludge products on migration and accumulation of mercury in soil-Styphnolobium japonicum system[J]. Journal of Beijing Forestry University, 2024, 46(9): 87-96. DOI: 10.12171/j.1000-1522.20230251
Citation: Chen Ling, Zhu Kun, Peng Zuodeng, Xiong Jianjun, Li Shuwen. Effects of short-term application of sludge products on migration and accumulation of mercury in soil-Styphnolobium japonicum system[J]. Journal of Beijing Forestry University, 2024, 46(9): 87-96. DOI: 10.12171/j.1000-1522.20230251

Effects of short-term application of sludge products on migration and accumulation of mercury in soil-Styphnolobium japonicum system

More Information
  • Received Date: September 27, 2023
  • Revised Date: December 26, 2023
  • Available Online: September 01, 2024
  • Objective 

    This paper aims to investigate the migration and accumulation of heavy metal mercury (Hg) in the soil-Styphnolobium japonicum system from sludge products in urban life, so as to explore the response mechanism of S. japonicum seedlings to Hg stress, and to clarify the application potential of sludge products in cultivation of S. japonicum seedlings.

    Method 

    The study focused on S. japonicum seedlings, employing a pot experiment to establish three gradients of sludge application rates (0, 2, and 4 kg/m2) and four sampling times (40, 80, 120, and 160 d). The treatments were divided into a transplanted S. japonicum group and a pure soil group to explore the dynamic changes in soil Hg content. The study further investigated the enrichment and migration patterns of Hg in the roots and leaves of S. japonicum, as well as the characteristics of subcellular distribution and the forms of existence.

    Result 

    (1) With the increase in the duration of sludge product application, the soil Hg content significantly decreased. In the soil planted with S. japonicum, the addition of sludge products resulted in significantly lower Hg content compared with pure soil in short term. (2) The amount of sludge product, sampling time, and their interaction all significantly affected the Hg content in the roots and leaves of S. japonicum. At 40 and 160 d, the application of sludge products significantly promoted the absorption of Hg by roots and leaves of S. japonicum. The use of sludge products in early stage can promote the transfer of Hg between roots and leaves, while in the later stage, it inhibited it. A low application rate of sludge products can significantly increase the biomass of S. japonicum, thereby increasing the accumulation of Hg. (3) In the roots and leaves of S. japonicum, Hg was mainly distributed in cell wall and soluble fractions, with a combined proportion exceeding 90%. (4) The residual form of Hg in roots and leaves of S. japonicum accounted for the largest proportion, with a range of 57.2% to 59.7% and 52.6% to 69.0%, respectively.

    Conclusion 

    S. japonicum can cope with the Hg stress brought by low application rates of sludge products, mainly through the pathways of cell wall fixation, vacuolar compartmentalization, and the transformation of Hg into a low-activity form for storage.

  • [1]
    Wei L L, Zhu F Y, Li Q Y, et al. Development, current state and future trends of sludge management in China: based on exploratory data and CO2-equivaient emissions analysis[J/OL]. Environment International, 2020, 144: 106093[2024−02−21]. https://10.1016/j.envint.2020.106093.
    [2]
    Guo Y Q, Guo Y L, Gong H, et al. Variations of heavy metals, nutrients, POPs and particle size distribution during “sludge anaerobic digestion-solar drying-land utilization process”: case study in China[J/OL]. Science of the Total Environment, 2021, 801: 149609[2024−02−23]. 10.1016/j.scitotenv.2021.149609.
    [3]
    王宁, 刘清伟, 职音, 等. 中国城市污泥中汞含量的时空分布特征[J]. 环境科学, 2018, 39(5): 2296−2305.

    Wang N, Liu Q W, Zhi Y, et al. Spatial and temporal variation of mercury in municipal sewage sludge in China[J]. Environmental Science, 2018, 39(5): 2296−2305.
    [4]
    Liu J, Lin L, Wang K Y, et al. Concentrations and species of mercury in municipal sludge of selected chinese cities and potential mercury emissions from sludge treatment and disposal[J]. Frontiers in Environmental Science, 2022, 10: 895075. doi: 10.3389/fenvs.2022.895075
    [5]
    张毅, 许泽胜, 陈佳蕊, 等. 北京市政污泥产排特征及处置利用发展历程的研究[J]. 应用化工, 2023, 52(4): 1−7.

    Zhang Y, Xu Z S, Chen J R, et al. Study on production and discharge characteristics and the development course of disposal and utilization of municipal sludge in Beijing[J]. Applied Chemical Industry, 2023, 52(4): 1−7.
    [6]
    徐富锦, 常会庆. 污泥堆肥替代氮肥对石灰性褐土肥力、小麦产量和品质的影响[J]. 生态与农村环境学报, 2022, 38(11): 1482−1490.

    Xu F J, Chang H Q. Effects of sludge composting to replace nitrogen fertilizer on cinnamon soil fertility, yield and quality of wheat[J]. Journal of Ecology and Rural Environment, 2022, 38(11): 1482−1490.
    [7]
    马博强. 污泥堆肥用于林木及草坪草种植时重金属的迁移与分布研究[D]. 北京: 北京林业大学, 2013.

    Ma B Q. Study on heavy metal transportation and distribution of composted sewage sludge applecated in forest and lawn grass planting[D]. Beijing: Beijing Forestry University, 2013.
    [8]
    Zhang B, Zhou X X, Ren X P C, et al. Recent research on municipal sludge as soil fertilizer in China: a review[J]. Water, Air, & Soil Pollution, 2023, 234(2): 1−14.
    [9]
    Yang G, Zhang G M, Wang H C. Current state of sludge production, management, treatment and disposal in China[J]. Water Research, 2015, 78: 60−73. doi: 10.1016/j.watres.2015.04.002
    [10]
    Zhou H, Wei L L, Wang D S, et al. Environmental impacts and optimizing strategies of municipal sludge treatment and disposal routes in China based on life cycle analysis[J]. Environment International, 2022, 166: 107378. doi: 10.1016/j.envint.2022.107378
    [11]
    戴晓虎, 张辰, 章林伟, 等. 碳中和背景下污泥处理处置与资源化发展方向思考[J]. 给水排水, 2021, 47(3): 1−5.

    Dai X H, Zhang C, Zhang L W, et al. Thoughts on the development direction of sludge treatment and resource recovery under the background of carbon neutrality[J]. Water & Wastewater Engineering, 2021, 47(3): 1−5.
    [12]
    彭远航, 冯嘉仪, 龙凤玲, 等. 三种园林植物幼苗生长节律对城市污泥的响应[J/OL]. 生态学杂志, 2023: 1−11[2024−02−11]. https://kns.cnki.net/kcms/detail/21.1148.Q.20230330.1825.008.html.

    Peng Y H, Feng J Y, Long F L, et al. Growth rhythm response of three landscape plant species to municipal sewage sludge[J/OL]. Chinese Journal of Ecology, 2023: 1−11[2024−02−11]. https://kns.cnki.net/kcms/detail/21.1148.Q.20230330.1825.008.html.
    [13]
    Liu H T, Wang Y W, Huang W D, et al. Response of wine grape growth, development and the transfer of copper, lead, and cadmium in soil-fruit system to sludge compost amendment[J]. Environmental Science and Pollution Research, 2016, 23(23): 24230−24236. doi: 10.1007/s11356-016-7676-z
    [14]
    刘晓贞, 麻冰涓, 崔莹, 等. 城市污水厂中汞的形态分布特征研究[J]. 环境科学与技术, 2016, 39(9): 125−130.

    Liu X Z, Ma B J, Cui Y, et al. Distribution characteristics of mercury in the sewage treatment plant[J]. Environmental Science & Technology, 2016, 39(9): 125−130.
    [15]
    牛振川, 张晓山, 陈进生, 等. 植被在大气汞收支中作用的研究进展与展望[J]. 生态毒理学报, 2014, 9(5): 843−849.

    Niu Z C, Zhang X S, Chen J S, et al. The role of vegetation in atmospheric mercury budgets: progresses and perspectives[J]. Asian Journal of Ecotoxicology, 2014, 9(5): 843−849.
    [16]
    郑瑶瑶. 不同地区常见树种叶片滞尘和吸滞重金属效果分析[D]. 贵阳: 贵州师范大学, 2020.

    Zheng Y Y. Analysis of dust retention and stagnation of heavy metals of leaves in common tree species in different region[D]. Guiyang: Guizhou Normal University, 2020.
    [17]
    杨娜, 包海, 刘智远, 等. 秋季呼和浩特市主要绿化树种叶面滞尘重金属含量分布特征[J]. 内蒙古师范大学学报(自然科学汉文版), 2022, 51(6): 622−629.

    Yang N, Bao H, Liu Z Y, et al. Distribution of heavy metal content in leaf dust of landscape trees at autumn in Hohhot[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 2022, 51(6): 622−629.
    [18]
    姚聪颖. 北京城镇排水污泥制有机肥林地利用的重金属污染风险评价研究[D]. 北京: 北京林业大学, 2020.

    Yao C Y. The risk assessment of heavy metal pollution in forest land utilization of organic fertilizer from sewage sludge in Beijing[D]. Beijing: Beijing Forestry University, 2020.
    [19]
    程佳雪. 北京40种园林树木重金属吸收能力评价与筛选[D]. 北京: 北京林业大学, 2020.

    Cheng J X. Evaluation and selection of heavy metal absorption capacity of 40 garden trees in Beijing[D]. Beijing: Beijing Forestry University, 2020.
    [20]
    赵策, 邱尔发, 马俊丽, 等. 行道树国槐不同形态重金属富集效能研究[J]. 林业科学研究, 2019, 32(3): 142−151.

    Zhao C, Qiu E F, Ma J L, et al. Study on enrichment efficiency of heavy metals in different formations in roadside trees of Sophora japonica L.[J]. Forest Research, 2019, 32(3): 142−151.
    [21]
    葛坤, 王培军, 邵海林, 等. 城市典型绿化树种叶片重金属积累及抗性生理特征[J]. 山西农业大学学报(自然科学版), 2022, 42(4): 96−104.

    Ge K, Wang P J, Shao H L, et al. Physiological characteristics of heavy metal accumulation and resistance in leaves of typical urban greening tree species[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2022, 42(4): 96−104.
    [22]
    Weigel H J, Jäger H J. Subcellular distribution and chemical form of cadmium in bean plants[J]. Plant Physiology, 1980, 65(3): 480−482. doi: 10.1104/pp.65.3.480
    [23]
    周芙蓉, 王进鑫, 张青, 等. 侧柏和国槐叶片中铅的化学形态与分布研究[J]. 农业环境科学学报, 2012, 31(11): 2121−2127.

    Zhou F R, Wang J X, Zhang Q, et al. Chemical forms and distribution of Pb in the leaves of Platycladus orientalis and Sophora japonica[J]. Journal of Agro-Environment Science, 2012, 31(11): 2121−2127.
    [24]
    Lu H P, Li Z A, Wu J T, et al. Influences of calcium silicate on chemical forms and subcellular distribution of cadmium in Amaranthus hypochondriacus L.[J]. Scientific Reports, 2017, 7(1): 40583. doi: 10.1038/srep40583
    [25]
    乔永, 周金星, 王小平. Pb、Cd复合胁迫对桑树种子萌发及幼苗生长的影响[J]. 北京林业大学学报, 2020, 42(4): 32−40. doi: 10.12171/j.1000-1522.20190244

    Qiao Y, Zhou J X, Wang X P. Effects of lead and cadmium combined stress on seed germination and seedling growth of mulberry[J]. Journal of Beijing Forestry University, 2020, 42(4): 32−40. doi: 10.12171/j.1000-1522.20190244
    [26]
    王婧, 莫其锋, 储双双, 等. 污泥堆肥对园林植物合果芋(Syngonium podophyllum)生长及重金属吸收累积的影响[J]. 生态学杂志, 2018, 37(6): 1752−1758.

    Wang J, Mo Q F, Chu S S, et al. Effects of sewage sludge compost on the growth and heavy metal accumulation in landscape plant Syngonium podophyllum[J]. Chinese Journal of Ecology, 2018, 37(6): 1752−1758.
    [27]
    杨桐桐. 污泥堆肥用于沙荒地土壤改良效能与污染物在环境介质中的变化规律研究[D]. 北京: 北京林业大学, 2016.

    Yang T T. Application of composted municipal sludge: study on the desert land soil improvement efficiency and the variation regulation of pollutants in ambient medium[D]. Beijing: Beijing Forestry University, 2016.
    [28]
    董晓芸, 柯凯恩, 胡自航, 等. 施用不同污泥堆肥对土壤理化性质及微生物活性的影响[J]. 东北林业大学学报, 2021, 49(6): 70−75. doi: 10.3969/j.issn.1000-5382.2021.06.014

    Dong X Y, Ke K E, Hu Z H, et al. Effect of different sludge composting on soil physical and chemical properties and microbial activity[J]. Journal of Northeast Forestry University, 2021, 49(6): 70−75. doi: 10.3969/j.issn.1000-5382.2021.06.014
    [29]
    陈春羽, 王定勇. 水溶性有机质对土壤及底泥中汞吸附行为的影响[J]. 环境科学学报, 2009, 29(2): 312−317. doi: 10.3321/j.issn:0253-2468.2009.02.013

    Chen C Y, Wang D Y. Effect of dissolved organic matter on adsorption of mercury by soils and sediment[J]. Acta Scientiae Circumstantiae, 2009, 29(2): 312−317. doi: 10.3321/j.issn:0253-2468.2009.02.013
    [30]
    贺蓓, 李瑞利, 柴民伟, 等. 深圳湾红树林沉积物–植物体系汞的分布规律和形态分配特征[J]. 生态环境学报, 2015, 24(3): 469−475.

    He B, Li R L, Chai M W, et al. Distribution and speciation of mercury (Hg) in Futian mangrove wetland, Shenzhen Bay[J]. Ecology and Environmental Sciences, 2015, 24(3): 469−475.
    [31]
    康虎虎, 刘晓宏, 张馨予, 等. 树木年轮汞记录: 进展、问题和展望[J]. 应用生态学报, 2021, 32(10): 3733−3742.

    Kang H H, Liu X H, Zhang X Y, et al. Mercury in tree rings: advances, problems and prospects[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3733−3742.
    [32]
    刘婷, 郑祥民, 刘飞, 等. 上海市香樟树叶总汞含量时空分布及影响因素[J]. 环境化学, 2017, 36(3): 486−495. doi: 10.7524/j.issn.0254-6108.2017.03.2016071001

    Liu T, Zheng X M, Liu F, et al. Seasonal and spatial distribution of mercury contents in Camphora leaves and its influencing factors in Shanghai[J]. Environmental Chemistry, 2017, 36(3): 486−495. doi: 10.7524/j.issn.0254-6108.2017.03.2016071001
    [33]
    陶惠, 陈颖, 刘艳伟, 等. 贵州万山汞矿区植物中汞的累积特征[J]. 环境化学, 2022, 41(12): 4047−4056. doi: 10.7524/j.issn.0254-6108.2021080903

    Tao H, Chen Y, Liu Y W, et al. Bioaccumulation of mercury in plants collected from Wanshan mercury mining areas in Guizhou Province[J]. Environmental Chemistry, 2022, 41(12): 4047−4056. doi: 10.7524/j.issn.0254-6108.2021080903
    [34]
    陈雪. 土壤中重金属的植物有效性研究综述[J]. 广东化工, 2022, 49(9): 86−88. doi: 10.3969/j.issn.1007-1865.2022.09.032

    Chen X. Research on the phytoavailability of heavy metals in the soils: a review[J]. Guangdong Chemical Industry, 2022, 49(9): 86−88. doi: 10.3969/j.issn.1007-1865.2022.09.032
    [35]
    Wang J J, Guo Y Y, Guo D L, et al. Fine root mercury heterogeneity: metabolism of lower-order roots as an effective route for mercury removal[J]. Environmental Science & Technology, 2012, 46(2): 769−777.
    [36]
    钱晓莉. 典型汞矿区耐性植物及汞富集机制研究[D]. 贵阳: 贵州大学, 2018.

    Qian X L. Tolerant plants and their accumulation mechanism of mercury in typical mercury mining areas[D]. Guiyang: Guizhou University, 2018.
    [37]
    Dessureault-Rompré J, Nowack B, Schulin R, et al. Metal solubility and speciation in the rhizosphere of Lupinus albus cluster roots[J]. Environmental Science & Technology, 2008, 42(19): 7146−7151.
    [38]
    萨如拉, 王章玮, 徐泽华, 等. 小兴安岭天然林不同林分汞含量分布特征与生物质汞库估算[J]. 环境科学学报, 2021, 41(11): 4703−4709.

    Sarula, Wang Z W, Xu Z H, et al. Distribution characteristics of mercury concentration and estimation biomass mercury pools in different natural forests of Xiaoxing’an Mountain[J]. Acta Scientiae Circumstantiae, 2021, 41(11): 4703−4709.
    [39]
    Yang Y, Yanai R D, Driscoll C T, et al. Concentrations and content of mercury in bark, wood, and leaves in hardwoods and conifers in four forested sites in the northeastern USA[J]. PLoS One, 2018, 13(4): e0196293. doi: 10.1371/journal.pone.0196293
    [40]
    闫雷, 朱园辰, 陈辰, 等. 镉在黄瓜幼苗中的化学形态及亚细胞分布[J]. 农业环境科学学报, 2019, 38(8): 1864−1871. doi: 10.11654/jaes.2019-0395

    Yan L, Zhu Y C, Chen C, et al. Subcellular distribution and chemical forms of cadmium in cucumber seedlings[J]. Journal of Agro-Environment Science, 2019, 38(8): 1864−1871. doi: 10.11654/jaes.2019-0395
    [41]
    曹冠华, 柏旭, 陈迪, 等. ABC转运蛋白结构特点及在植物和真菌重金属耐性中的作用与机制[J]. 农业生物技术学报, 2016, 24(10): 1617−1628.

    Cao G H, Bai X, Chen D, et al. Structure characteristics of ABC transporter protein and the function and mechanism on enhancing resistance of plants and fungi to heavy metals[J]. Journal of Agricultural Biotechnology, 2016, 24(10): 1617−1628.
    [42]
    李花, 刘军, 毛玉芬, 等. 城市污泥及其堆肥中汞的形态分析[J]. 河南农业, 2014(10): 50−53. doi: 10.3969/j.issn.1006-950X.2014.10.027

    Li H, Liu J, Mao Y F, et al. Speciation analysis of mercury in municipal sludge and its compost[J]. Agriculture of Henan, 2014(10): 50−53. doi: 10.3969/j.issn.1006-950X.2014.10.027
    [43]
    刘俊华, 王文华, 彭安. 土壤中汞生物有效性的研究[J]. 农业环境保护, 2000, 19(4): 216−220.

    Liu J H, Wang W H, Peng A. Bioavailability of mercury in soil[J]. Agro-Environmental Protection, 2000, 19(4): 216−220.

Catalog

    Article views (157) PDF downloads (14) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return