Citation: | Zhan Ting, Ren Jinyuan, Peng Yao, Cao Jinzhen. Influence of bamboo fiber particle size and addition ratio on the properties of bamboo fiber/polypropylene/CaCO3 composite[J]. Journal of Beijing Forestry University, 2024, 46(1): 131-140. DOI: 10.12171/j.1000-1522.20230262 |
The influence mechanism of different bamboo fiber particle sizes and raw material ratios on the physical and mechanical properties of bamboo fiber/polypropylene/calcium carbonate composites was expounded, which could provide reference for the industrial production and application of BFs/PP/CaCO3 composites.
Taking calcium carbonate, bamboo fiber and polypropylene as the raw materials, BFs/PP/CaCO3 composites were prepared by controlling the particle size of bamboo fiber (40, 80 and 120 mesh) and the ratio of raw materials, and their physical and mechanical properties were investigated. The microstructure, thermal stability, and fluidity of the composites were characterized by scanning electron microscope, thermogravimetric analyzer, and melt index instrument, respectively. Finally, considering the production cost and related performance requirements, some suggestions were put forward for the production and application of BFs/PP/CaCO3 composites.
With the increase of calcium carbonate content, the tensile strength, flexural strength, and elastic modulus of the composites decreased gradually, while the density increased. The particle size of bamboo fiber had a significant effect on the physical and mechanical properties of composites. When the particle size of bamboo fiber was 80 mesh, and the addition of calcium carbonate and bamboo fiber was 5% and 45%, respectively, the tensile strength, bending strength, and elastic modulus of the composites were the best, which were 36.09 MPa, 62.6 MPa and 4.30 GPa, respectively. The addition of calcium carbonate had little effect on the impact strength of composites. In addition, with the increase of calcium carbonate content, the thermal stability and melt fluidity of the composites also improved. When the proportion of calcium carbonate mass was 20%, the melt flow rate of the composites was 16.50 g/10 min, which was 8.98% higher than that of the group without calcium carbonate, thus the processability was improved.
The composite material with 80 mesh bamboo fiber exhibites excellent physical and mechanical properties. After adding calcium carbonate, the raw material cost of the composite material can be reduced by 1.63%−6.54%, and its related indexes were still far higher than the requirements of industry standards.
[1] |
张卫军. 我国木材市场供给现状分析与未来发展建议[J]. 造纸装备及材料, 2023, 52(8): 142−144. doi: 10.3969/j.issn.1672-3066.2023.08.047
Zhang W J. Analysis of China’s timber market supply status and suggestions for future development[J]. Paper Equipment and Materials, 2023, 52(8): 142−144. doi: 10.3969/j.issn.1672-3066.2023.08.047
|
[2] |
国家林业和草原局. 中国森林资源报告2014—2018[M]. 北京: 中国林业出版社, 2019: 3−4.
National Forestry and Grassland Administration. China forest resources report 2014−2018[M]. Beijing: China Forestry Publishing House, 2019: 3−4.
|
[3] |
Zuo Y F, Chen K L, Li P, et al. Effect of nano-SiO2 on the compatibility interface and properties of polylactic acid-grafted-bamboo fiber/polylactic acid composite[J]. International Journal of Biological Macromolecules: Structure, Function and Interactions, 2020, 157(1): 177−186.
|
[4] |
Yang Y, Zhang C L, Weng Y X. Effects of CaCO3 surface modification and water spraying on the weathering properties of PBAT/CaCO3 films[J]. Polymer Testing, 2021, 102: 107334. doi: 10.1016/j.polymertesting.2021.107334
|
[5] |
任文涵, 张丹, 王戈, 等. 竹质纤维-HDPE复合材料的力学和热性能研究[J]. 北京林业大学学报, 2014, 36(4): 134−139. doi: 10.13332/j.cnki.jbfu.2014.04.001
Ren W H, Zhang D, Wang G, et al. Study on mechanical and thermal properties of bamboo fiber-HDPE composites[J]. Journal of Beijing Forestry University, 2014, 36(4): 134−139. doi: 10.13332/j.cnki.jbfu.2014.04.001
|
[6] |
Hao J X, Yi X, Zong G G, et al. Fabrication of long bamboo fiber-reinforced thermoplastic composite by extrusion and improvement of its properties[J]. Industrial Crops and Products, 2021, 173: 114120. doi: 10.1016/j.indcrop.2021.114120
|
[7] |
Djafari P S R. Advanced high strength natural fibre composites in construction[M]. Cambridge: Woodhead Publishing, 2017: 59−83.
|
[8] |
Kumar R, Ganguly A, Purohit R. Properties and applications of bamboo and bamboo fibre composites[J]. Materials Today: Proceedings, 2023(8): 162.
|
[9] |
Kanaginahal G M, Hebbar S, Shahapurkar K, et al. Leverage of weave pattern and composite thickness on dynamic mechanical analysis, water absorption and flammability response of bamboo fabric/epoxy composites[J]. Heliyon, 2023, 9(1): e12905. doi: 10.1016/j.heliyon.2023.e12905
|
[10] |
徐祥, 陈红, 费本华, 等. 竹龄, 粒径配比和含水率对毛竹无胶板材物理力学性能的影响[J]. 林业工程学报, 2023, 8(1): 30−37.
Xu X, Chen H, Fei B H, et al. Effects of age, particle size and moisture content on physical and mechanical properties of moso bamboo non-glue bonded composites[J]. Journal of Forestry Engineering, 2023, 8(1): 30−37.
|
[11] |
刘晓玲. 竹粉/聚丙烯复合材料性能及其界面特征[D]. 福州: 福建农林大学, 2009.
Liu X L. The performance and interface characterization of bamboo flour/PP composites[D]. Fuzhou: Fujian Agriculture and Forestry University, 2009.
|
[12] |
Silva A L N, Rocha M C G, Moraes M A R, et al. Mechanical and rheological properties of composites based on polyolefin and mineral additives[J]. Polymer Testing, 2002, 21(1): 57−60. doi: 10.1016/S0142-9418(01)00047-2
|
[13] |
Faridul H K M, Noman A, Hasan K M, et al. Sustainable bamboo fiber reinforced polymeric composites for structural applications: a mini review of recent advances and future prospects[J]. Case Studies in Chemical and Environmental Engineering, 2023, 8: 100362. doi: 10.1016/j.cscee.2023.100362
|
[14] |
Ritchie R O. The conflicts between strength and toughness[J]. Nature Materials, 2011, 10(11): 817−822. doi: 10.1038/nmat3115
|
[15] |
Li C Q, Liang C, Chen Z M, et al. Surface modification of calcium carbonate: a review of theories, methods and applications[J]. Journal of Central South University, 2021, 28: 2589−2611. doi: 10.1007/s11771-021-4795-6
|
[16] |
Zapata P A, Palza H, Díaz B, et al. Effect of CaCO3 nanoparticles on the mechanical and photo-degradation properties of LDPE[J]. Molecules, 2018, 24(1): 126. doi: 10.3390/molecules24010126
|
[17] |
黄俊杰, 谭敬尹, 胡传双, 等. 广东省4个竹种物理力学性能研究[J]. 林产工业, 2023, 60(4): 25−32. doi: 10.19531/j.issn1001-5299.202304005
Huang J J, Tan J Y, Hu C S, et al. Research on the physico-mechanical properties of four bamboo species in Guangdong Province[J]. China Forest Products Industry, 2023, 60(4): 25−32. doi: 10.19531/j.issn1001-5299.202304005
|
[18] |
Mousavi S R, Zamani M H, Estaji S, et al. Mechanical properties of bamboo fiber-reinforced polymer composites: a review of recent case studies[J]. Journal of Materials Science, 2022, 57(5): 3143−3167. doi: 10.1007/s10853-021-06854-6
|
[19] |
Pivsa-Art S, Pivsa-Art W. Eco-friendly bamboo fiber-reinforced poly (butylene succinate) biocomposites[J]. Polymer Composites, 2021, 42: 1752−1759. doi: 10.1002/pc.25930
|
[20] |
唐彤. 毛竹材的桐油热处理研究[D]. 北京: 中国林业科学研究院, 2019.
Tang T. Research on thermal modification of moso bamboo in tung oil[D]. Beijing: Chinese Academy of Forestry, 2019.
|
[21] |
Cao Z, Daly M, Clémence L, et al. Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods[J]. Applied Surface Science, 2016, 378: 320−329. doi: 10.1016/j.apsusc.2016.03.205
|
[22] |
Butylina S, Hyvärinen M, Kärki T. Accelerated weathering of wood-polypropylene composites containing minerals[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(11): 2087−2094. doi: 10.1016/j.compositesa.2012.07.003
|
[23] |
Liu W D, Qiu H R, Li K C. Effects of fiber extraction, morphology, and surface modification on the mechanical properties and water absorption of bamboo fibers-unsaturated polyester composites[J]. Polymer Composites, 2014, 37(5): 1612−1619.
|
[24] |
李凯. 水热竹纤维增强聚丙烯基复合材料的性能研究[D]. 杭州: 浙江大学, 2022.
Li K. Properties of hydrothermal treated bamboo fiber/polypropylene composites[D]. Hangzhou: Zhejiang University, 2022.
|
[25] |
Tang Q, Wang Y, Ren Y, et al. A novel strategy for the extraction and preparation of bamboo fiber-reinforced polypropylene composites[J]. Polymer Composites, 2018, 40(6): 2178−2186.
|
[26] |
Asim M, Paridah M T, Chandrasekar M, et al. Thermal stability of natural fibers and their polymer composites[J]. Iranian Polymer Journal, 2020, 29: 625−648. doi: 10.1007/s13726-020-00824-6
|
[27] |
Peng Y, Nair S S, Chen H Y, et al. Effects of lignin content on mechanical and thermal properties of polypropylene composites reinforced with micro particles of spray dried cellulose nanofibrils[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 11078−11086.
|
[28] |
童佳佳. 纳米CaCO3改性及其在塑料中的应用[D]. 合肥: 合肥工业大学, 2021.
Tong J J. Modification of nano-CaCO3 and its application in plastics[D]. Hefei: Hefei University of Technology, 2021.
|
[29] |
何天白, 胡汉杰. 功能高分子与新技术[M]. 北京: 化学工业出版社, 2001: 86−93.
He T B, Hu H J. Functional polymer and new technology [M]. Beijing: Chemical Industry Press, 2001: 86−93.
|
[30] |
侯景涛, 张红星, 李广全, 等. 浅谈聚丙烯抗冲共聚系列产品的开发与工业化[J]. 中国设备工程, 2023(增刊1): 169−172.
Hou J T, Zhang H X, Li G Q, et al. On the development and industrialization of polypropylene impact copolymer series products[J]. China Plant Engineering, 2023(Suppl.1): 169−172.
|
[31] |
蔡红珍. 典型生物质/塑料复合材料性能的研究[D]. 沈阳: 沈阳农业大学, 2015.
Cai H Z. Study on characterization of typical biomass plastic composites[D]. Shenyang: Shenyang Agricultural University, 2015.
|
[1] | Liu Xiaojing, Wen Xin, Zhao Rui, Chen Shaoliang, Zhao Nan, Li Jinke, Zhou Xiaoyang, Yao Jun. Overexpression of Populus euphratica PeCSP1 negatively regulating salt tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2023, 45(7): 9-17. DOI: 10.12171/j.1000-1522.20220020 |
[2] | Wu Xia, Zhang Yinan, Zhao Nan, Zhang Ying, Zhao Rui, Li Jinke, Zhou Xiaoyang, Chen Shaoliang. Overexpression of PeAnn1 from Populus euphratica negatively regulates drought resistance in transgenic Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2020, 42(6): 14-25. DOI: 10.12171/j.1000-1522.20200031 |
[3] | Li Pingping, Zeng Ming, Li Wenhai, Zhao Yuanyuan, Zheng Caixia. Comparative study on antioxidant capacity of heteromorphic leaves of Populus euphratica[J]. Journal of Beijing Forestry University, 2019, 41(8): 76-83. DOI: 10.13332/j.1000-1522.20190134 |
[4] | DENG Jia-yin, ZHANG Yan-li, ZHANG Yi-nan, ZHAO Rui, LI Jin-ke, ZHOU Xiao-yang, LIU Xiang-fen, CHEN Shao-liang. PeAPY1 and PeAPY2 of Populus euphratica regulating salt tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2017, 39(6): 13-21. DOI: 10.13332/j.1000-1522.20170034 |
[5] | WANG Shao-jie, ZHAO Nan, SHEN Ze-dan, SA Gang, SUN Hui-min, ZHAO Rui, SHEN Xin, CHEN Shao-liang. Mediation of NO on Cd2+ uptake in Populus euphratica cells under cadmium stress[J]. Journal of Beijing Forestry University, 2015, 37(6): 11-16. DOI: 10.13332/j.1000-1522.20150023 |
[6] | ZHANG Xiao-fei, LU Xin, DUAN Hui, LIAN Cong-long, XIA Xin-li, YIN Wei-lun. Cloning and functional analysis of PeNAC045 from Populus euphratica[J]. Journal of Beijing Forestry University, 2015, 37(6): 1-10. DOI: 10.13332/j.1000-1522.20150066 |
[7] | BAI Xue, ZHANG Shu-jing, ZHENG Cai-xia, HAO Jian-qing, LI Wen-hai, YANG Yang. Comparative study on photosynthesis and water physiology of polymorphic leaves of Populus euphratica[J]. Journal of Beijing Forestry University, 2011, 33(6): 47-52. |
[8] | MA Hong-shuang, XIA Xin-li, YIN Wei-lun. Cloning and analysis of SCL7 gene from Populus euphratica[J]. Journal of Beijing Forestry University, 2011, 33(1): 1-10. |
[9] | ZHANG Zheng-hai, , KANG Xiang-yang, LIU Ming-hu, DUAN Wu-la. Organization of microtubule during microsporogenesis in Populus simonii × P. euphratica.[J]. Journal of Beijing Forestry University, 2008, 30(6): 36-40. |
[10] | LI Li, ZHOU Yan, GAO Shu-min, WANG Ying, LIU Yan. Protein vacuoles in the egg cells of Pinus tabulaeformis Carr.and specific proteins relating to the development of egg cells[J]. Journal of Beijing Forestry University, 2007, 29(5): 57-61. DOI: 10.13332/j.1000-1522.2007.05.011 |