• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wei Zhaoyang, Zhang Jianjun, Lai Zongrui, Hu Yawei, Zhao Jiongchang, Tang Peng, Wang Siqi. Influence of density and site on fine root characteristics of Pinus tabuliformis plantations in loess area of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2024, 46(10): 22-32. DOI: 10.12171/j.1000-1522.20230282
Citation: Wei Zhaoyang, Zhang Jianjun, Lai Zongrui, Hu Yawei, Zhao Jiongchang, Tang Peng, Wang Siqi. Influence of density and site on fine root characteristics of Pinus tabuliformis plantations in loess area of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2024, 46(10): 22-32. DOI: 10.12171/j.1000-1522.20230282

Influence of density and site on fine root characteristics of Pinus tabuliformis plantations in loess area of western Shanxi Province, northern China

More Information
  • Received Date: October 21, 2023
  • Revised Date: September 28, 2024
  • Available Online: October 10, 2024
  • Objective 

    This paper explores the vertical distribution of fine root biomass (≤ 2 mm) and fine root morphology of P. tabuliformis plantations under different stand densities, slopes and aspects, so as to provide a basis for vegetation management and ecological construction evaluation in the loess region of western Shanxi Province of northern China.

    Method 

    We investigated the vertical distribution and influencing factors of fine root characteristics, including fine root biomass density, length density, tissue density, specific root length and specific surface area in 0−100 cm soil layer of P. tabuliformis under five stand densities (M1(< 2 000 tree/ha), M2(2 000−3 000 tree/ha), M3(3 000−4 000 tree/ha), M4(4 000−5 000 tree/ha), M5(> 5 000 tree/ha)), three slopes (≤ 20°, 20°−30°, 30°−40°) and two aspects (shady slope and sunny slope).

    Result 

    (1) The fine root biomass density in 0−100 cm soil layer exhibited a unimodal pattern with the increase in stand density, reaching its peak at 606.19 g/m3 with M4 density. The slope and aspect showed no significant impact on fine root biomass density. The density of fine root biomass decreased significantly with the increase of soil depth (P < 0.05), mainly concentrated in 0−20 cm soil layer, accounting for more than 38%. (2) With the increase of stand density, the fine root length density of 0−100 cm soil layer showed a unimodal pattern (the maximum value with 3 639.73 m/ m2 at M4 density ), and the specific root length and specific surface area showed a trend of decreasing first and then increasing (the minimum values with 601 cm/g and 101.09 cm2/g, respectively). While slope and aspect had no significant effects on the morphology and vertical distribution of fine roots. In the vertical direction, the ratio of fine root length density in 0−40 cm soil layer of each stand density was more than 60%. The specific root length and specific surface area of the 0-20 cm soil layer initially decreased and then increased as stand density increased(P<0.05). (3) Correlation analysis showed that stand density and soil depth significantly influenced fine root biomass density and morphology. Fine root biomass density and root length density were significantly positively correlated with stand density, soil total carbon, total nitrogen and organic carbon, significantly negatively correlated with soil depth and C∶N. Specific root length and specific surface area were significantly negatively correlated with stand density and soil organic carbon, and significantly positively correlated with soil depth (P < 0.05).

    Conclusion 

    Stand density is a key regulatory factor for fine root characteristics of P. tabuliformis plantations. Stand management measures can be used to adjust stand density and fine root survival strategies, so as to improve the adaptability of P. tabuliformis plantations to cope with environmental stress, and provide theoretical support for sustainable management of artificial forest in semi-arid regions.

  • [1]
    李石一宁, 熊德成, 姚晓东, 等. 常绿阔叶林中壳斗科树种细根形态与养分含量的序级变化特征[J]. 生态学杂志, 2022, 41(5): 833−840.

    Li S Y N, Xiong D C, Yao X D, et al. Morphology and nutrient contents of fine roots from different orders in Fagaceae species in an evergreen broad-leaved forest[J]. Chinese Journal of Ecology, 2022, 41(5): 833−840.
    [2]
    Zou S, Li D, Di N, et al. Stand development modifies effects of soil water availability on poplar fine-root traits: evidence from a six-year experiment[J]. Plant and Soil, 2022, 480(1−2): 165−184. doi: 10.1007/s11104-022-05568-1
    [3]
    孙龙, 胡春雨, 胡同欣. 计划火烧对红松人工林细根生物量的影响[J]. 生态学杂志, 2024, 43(2): 362−371.

    Sun L, Hu C Y, Hu T X. Effect of prescribed burning on fine root biomass of Pinus koraiensis plantation[J]. Chinese Journal of Ecology, 2024, 43(2): 362−371.
    [4]
    刘健, 贺晓, 包海龙, 等. 毛乌素沙地沙柳细根分布规律及与土壤水分分布的关系[J]. 中国沙漠, 2010, 30(6): 1362−1366.

    Liu J, He X, Bao H L, et al. Distribution of fine roots of Salix psammophila and its relationship with soil moisture in Mu Us Sandland[J]. Journal of Desert Research, 2010, 30(6): 1362−1366.
    [5]
    任杰, 赵成章, 赵夏纬, 等. 金塔绿洲荒漠交错带沙蓬根系分形特征[J]. 生态学报, 2020, 40(15): 5298−5305.

    Ren J, Zhao C Z, Zhao X W, et al. Fractal characteristics of Agriophyllum squarrosum roots in desert-oasis ecotone in Jinta County, Gansu Province[J]. Acta Ecologica Sinica, 2020, 40(15): 5298−5305.
    [6]
    Culmsee H, Leuschner C, Moser G, et al. Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests[J]. Journal of Biogeography, 2010, 37(5): 960−974. doi: 10.1111/j.1365-2699.2009.02269.x
    [7]
    王琪, 于水强, 王维枫, 等. 不同密度和植株配置形状的杨树人工林细根生物量特征研究[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 179−185.

    Wang Q, Yu S Q, Wang W F, et al. Characteristics of fine-root biomass in poplar plantations with different planting densities and spacing configurations[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(1): 179−185.
    [8]
    张艳杰, 温佐吾. 不同造林密度马尾松人工林的根系生物量[J]. 林业科学, 2011, 47(3): 75−81. doi: 10.11707/j.1001-7488.20110312

    Zhang Y J, Wen Z W. Root biomass of Pinus massoniana plantations under different planting densities[J]. Scientia Silvae Sinicae, 2011, 47(3): 75−81. doi: 10.11707/j.1001-7488.20110312
    [9]
    贾全全, 罗春旺, 刘琪璟, 等. 不同林分密度油松人工林生物量分配模式[J]. 南京林业大学学报(自然科学版), 2015, 39(6): 87−92.

    Jia Q Q, Luo C W, Liu Q J, et al. Biomass allocation in relation to stand density in Pinus tabuliformis plantation[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2015, 39(6): 87−92.
    [10]
    徐程扬, 张华, 贾忠奎, 等. 林分密度和立地类型对北京山区侧柏人工林根系的影响[J]. 北京林业大学学报, 2007, 29(4): 95−99. doi: 10.3321/j.issn:1000-1522.2007.04.022

    Xu C Y, Zhang H, Jia Z K, et al. Effects of stand density and site types on root characteristics of Platycladus orientalis plantations in Beijing mountainous area[J]. Journal of Beijing Forestry University, 2007, 29(4): 95−99. doi: 10.3321/j.issn:1000-1522.2007.04.022
    [11]
    詹龙飞, 于水强, 王维枫, 等. 水平空间配置对南林-95杨人工林主要细根性状的影响[J]. 北京林业大学学报, 2019, 41(10): 11−19. doi: 10.13332/j.1000-1522.20190011

    Zhan L F, Yu S Q, Wang W F, et al. Effects of horizontal spatial allocation on main fine root characters of Populus × euramericana cv. ‘Nanlin-95’ plantations[J]. Journal of Beijing Forestry University, 2019, 41(10): 11−19. doi: 10.13332/j.1000-1522.20190011
    [12]
    祝乐, 许晨阳, 耿增超, 等. 秦岭3种天然林细根分布特征及其与土壤理化性质的关系[J]. 林业科学, 2020, 56(2): 24−31.

    Zhu L, Xu C Y, Geng Z C, et al. Characterization of fine roots distribution in three natural forests of Qinling Mountains and their relations with soil physical and chemical properties[J]. Scientia Silvologica, 2020, 56(2): 24−31.
    [13]
    王诗楠, 张卓栋, 韩玥, 等. 河北坝上地区不同坡向植物根系分布特征研究[J]. 水土保持研究, 2014, 21(2): 152−157.

    Wang S N, Zhang Z D, Han Y, et al. Research on root distribution characteristics of vegetation on different slope aspects in Bashang Region of Hebei Province[J]. Research of Soil and Water Conservation, 2014, 21(2): 152−157.
    [14]
    朱昊阳, 李洪宇, 王晓蕾, 等. 黄土高原油松冠层气孔导度和蒸腾变化特征与模拟[J]. 生态学报, 2022, 42(22): 9130−9142.

    Zhu H Y, Li H Y, Wang X L, et al. Characteristics and modeling of canopy stomatal conductance and transpiration of Pinus tabuliformis on the Loess Plateau[J]. Acta Ecologica Sinica, 2022, 42(22): 9130−9142.
    [15]
    荐圣淇, 赵传燕, 方书敏, 等. 陇中黄土高原主要造林树种细根生物量分布[J]. 应用生态学报, 2014, 25(7): 1905−1911.

    Jian S Q, Zhao C Y, Fang S M, et al. Distribution of fine root biomass of main planting tree species in the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2014, 25(7): 1905−1911.
    [16]
    张帆, 陈建文, 王孟本. 幼龄柠条细根的空间分布和季节动态[J]. 生态学报, 2012, 32(17): 5484−5493. doi: 10.5846/stxb201111041669

    Zhang F, Chen J W, Wang M B. The spatial distribution and seasonal dynamics of fine roots in a young Caragana korshinskii plantation[J]. Acta Ecologica Sinica, 2012, 32(17): 5484−5493. doi: 10.5846/stxb201111041669
    [17]
    李帅锋, 贾呈鑫卓, 杨利华, 等. 林分密度对思茅松人工林根系生物量空间分布的影响[J]. 西北植物学报, 2017, 37(11): 2265−2272. doi: 10.7606/j.issn.1000-4025.2017.11.2265

    Li S F, Jia C X Z, Yang L H, et al. The effect of stand density on the spatial distribution of root biomass of Pinus kesiya var. langbianensis plantation[J]. Acta Botanica Sinica of Northwest China, 2017, 37(11): 2265−2272. doi: 10.7606/j.issn.1000-4025.2017.11.2265
    [18]
    李浩, 胡婵娟, 赵荣钦, 等. 黄土丘陵区典型人工林的根系分布特征[J]. 干旱区研究, 2021, 38(5): 1420−1428.

    Li H, Hu C J, Zhao R Q, et al. Root distribution characteristics of three typical plantations in a loess hills region[J]. Arid Zone Research, 2021, 38(5): 1420−1428.
    [19]
    戴银月, 孙平生, 康迪, 等. 黄土丘陵区人工林细根生物量及其影响因素[J]. 生态学杂志, 2018, 37(8): 2229−2236.

    Dai Y Y, Sun P S, Kang D, et al. Fine root biomass of artificial forests in loess hilly region and its influencing factors[J]. Chinese Journal of Ecology, 2018, 37(8): 2229−2236.
    [20]
    肖义发, 欧光龙, 胥辉. 林木细根生物量分布及其动态研究综述[J]. 林业调查规划, 2013, 38(1): 34−38, 57. doi: 10.3969/j.issn.1671-3168.2013.01.009

    Xiao Y F, Ou G L, Xu H. Tree fine root biomass distribution and its dynamic research[J]. Forestry Investigation and Planning, 2013, 38(1): 34−38, 57. doi: 10.3969/j.issn.1671-3168.2013.01.009
    [21]
    贾亚运, 何宗明, 周丽丽, 等. 造林密度对杉木幼林生长及空间利用的影响[J]. 生态学杂志, 2016, 35(5): 1177−1181.

    Jia Y Y, He Z M, Zhou L L, et al. Effects of planting densities on the growth and space utilization of young Cunninghamia lanceolata plantation[J]. Chinese Journal of Ecology, 2016, 35(5): 1177−1181.
    [22]
    鲜李虹, 刘勇, 常笑超, 等. 不同密度毛白杨人工林细根空间分布特征[J]. 中南林业科技大学学报, 2022, 42(8): 48−58.

    Xian L H, Liu Y, Chang X C, et al. Spatial distribution of the fine roots in Populus tomentosa plantation under different densities[J]. Journal of Central South University of Forestry and Technology, 2022, 42(8): 48−58.
    [23]
    王凯, 宋立宁, 吕林有, 等. 科尔沁沙地主要造林树种细根生物量垂直分布特征[J]. 植物研究, 2014, 34(6): 824−828. doi: 10.7525/j.issn.1673-5102.2014.06.018

    Wang K, Song L N, Lü L Y, et al. Fine root biomass vertical distribution character of main afforestation tree species in Horqin Sandy Land[J]. Bulletin of Botanical Research, 2014, 34(6): 824−828. doi: 10.7525/j.issn.1673-5102.2014.06.018
    [24]
    Zhou Z, Shang G Z. Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. forest of the Loess Plateau of China[J]. Plant and Soil, 2007, 291(1−2): 119−129. doi: 10.1007/s11104-006-9179-z
    [25]
    杨向东, 邓磊. 共和盆地东缘不同林龄青杨人工林细根生物量和形态特征[J]. 西北林学院学报, 2023, 38(2): 8−16, 131. doi: 10.3969/j.issn.1001-7461.2023.02.02

    Yang X D, Deng L. Fine root biomass and morphological characteristics in Populus cathayana plantations at different ages along the eastern margin of the Gonghe Basin[J]. Journal of Northwest Forestry College, 2023, 38(2): 8−16, 131. doi: 10.3969/j.issn.1001-7461.2023.02.02
    [26]
    胡宇美, 马理辉, 李蕊, 等. 黄土高原地区森林生态系统地下生物量影响因素[J]. 生态学报, 2021, 41(21): 8643−8653.

    Hu Y M, Ma L H, Li R, et al. Factor analysis of underground biomass in forest ecosystem on the Loess Plateau[J]. Acta Ecologica Sinica, 2021, 41(21): 8643−8653.
    [27]
    安慧, 韦兰英, 刘勇, 等. 黄土丘陵区油松人工林和白桦天然林细根垂直分布及其与土壤养分的关系[J]. 植物营养与肥料学报, 2007, 13(4): 611−619. doi: 10.3321/j.issn:1008-505X.2007.04.012

    An H, Wei L Y, Liu Y, et al. Distribution characters of fine root of artificial Pinus tabulaeformis and natural Betula platyphylla forests and their relation to soil nutrients in hilly loess regions[J]. Journal of Plant Nutrition and Fertilizer, 2007, 13(4): 611−619. doi: 10.3321/j.issn:1008-505X.2007.04.012
    [28]
    Geng Q, Ma X, Fu X, et al. Effects of stand age and inter-annual precipitation variability on fine root biomass in poplar plantations in the eastern coastal China[J]. Forest Ecology and Management, 2022, 505: 119883[2021−11−27]. https://doi.org/10.1016/j.foreco.2021.119883.
    [29]
    胡慧, 包维楷, 李芳兰. 岷江上游4个栽培树种细根功能性状垂直分布的差异性[J]. 生态学杂志, 2020, 39(1): 46−56.

    Hu H, Bao W K, Li F L. Differential vertical distribution of functional traits of fine roots of four cultivated tree species in the upper reaches of Minjiang River[J]. Chinese Journal of Ecology, 2020, 39(1): 46−56.
    [30]
    燕辉, 苏印泉, 李吉平, 等. 秦岭北坡刺槐人工林细根垂直分布及其与土壤养分的关系[J]. 水土保持研究, 2008, 15(3): 65−68, 73.

    Yan H, Su Y Q, Li J P, et al. Distribution characters of fine root of artificial Robinia pseudoacacia forests and its relation to soil nutrients in the northern slope of Qinling Mountains[J]. Research of Soil and Water Conservation, 2008, 15(3): 65−68, 73.
    [31]
    Weemstra M, Kioraposyolou N, Ruijven J, et al. The role of fine-root mass, specific root length and life span in tree performance: a whole-tree exploration[J]. Functional Ecology, 2020, 34(3): 575−585. doi: 10.1111/1365-2435.13520
  • Related Articles

    [1]Yin Luqin, Wang Cheng, Liu Ruzhi. Characteristics and influencing factors of bird community in residential areas of Beijing[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240062
    [2]Xu Chao, Long Ting, Wu Xinlei, Chen Jie, Liang Yanjun, Li Jingwen. Reintroducing effects and influencing factors of Taxus cuspidata population[J]. Journal of Beijing Forestry University, 2020, 42(8): 34-42. DOI: 10.12171/j.1000-1522.20190423
    [3]Liu Feng, Xi Benye, Dai Tengfei, Yu Jinglin, Li Guangde, Chen Yushan, Wang Jie, Jia Liming. Effects of water and fertilizer coupling on soil nitrogen, fine root distribution and biomass of Populus tomentosa[J]. Journal of Beijing Forestry University, 2020, 42(1): 75-83. DOI: 10.12171/j.1000-1522.20190222
    [4]He Xiao, Cao Lei, Xu Shenglin, Li Haikui. Forest biomass characteristics and influencing factors in different restoration stages in the Daxing’anling forest region of Inner Mongolia, northern China[J]. Journal of Beijing Forestry University, 2019, 41(9): 50-58. DOI: 10.13332/j.1000-1522.20190030
    [5]ZHANG Zhu, WANG Chuan-kuan.. Temporal dynamics and vertical distribution of dissolved organic carbon in snowmelt runoff in a temperate deciduous forest in Maoershan region, northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(11): 1-8. DOI: 10.13332/j.1000-1522.20160114
    [6]LI Ning, CHEN Li-hua, YANG Yuan-jun.. Factors influencing root tensile properties of Pinus tabuliformis and Larix principis-rupprechtii.[J]. Journal of Beijing Forestry University, 2015, 37(12): 77-84. DOI: 10.13332/j.1000-1522.20150131
    [7]JIANG Ping, YE Ji, WANG Shao-xian, , FENG Xiu-chun, HUANG Xiang-tong, NIU Li-jun, WU Gang. Vertical distribution of floristic composition, community structure and biodiversity of forest communities along altitudinal gradients on south slope of the Changbai Mountain, northeastern China.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 258-262.
    [8]CAO Wei, LI Yuanyuan. Vertical pattern of flora from Changbai Mountain, China.[J]. Journal of Beijing Forestry University, 2008, 30(4): 53-58.
    [9]JIAO Wen-jun, ZHU Qing-ke, ZHANG Yu-qing, WU Xiu-qin, WANG Na. Distribution of biotic crusts and its influencing factors in the grain-for-green land of the loess region, northern Shaanxi Province[J]. Journal of Beijing Forestry University, 2007, 29(1): 102-107. DOI: 10.13332/j.1000-1522.2007.01.018
    [10]YANG Li-yun, LI Wen-hua. Fine root distribution and turnover in a broad-leaved and Korean pine climax forest of the Changbai Mountain in China[J]. Journal of Beijing Forestry University, 2005, 27(2): 1-5.

Catalog

    Article views (217) PDF downloads (42) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return