Citation: | Liu Feng, Xi Benye, Dai Tengfei, Yu Jinglin, Li Guangde, Chen Yushan, Wang Jie, Jia Liming. Effects of water and fertilizer coupling on soil nitrogen, fine root distribution and biomass of Populus tomentosa[J]. Journal of Beijing Forestry University, 2020, 42(1): 75-83. DOI: 10.12171/j.1000-1522.20190222 |
[1] |
Xi B Y, Wang Y, Jia L M, et al. Characteristics of fine root system and water uptake in a triploid Populus tomentosa plantation in the North China Plain: implications for irrigation water management[J]. Agricultural Water Management, 2013, 117: 83−92. doi: 10.1016/j.agwat.2012.11.006
|
[2] |
Ma J Z, Wang X S, Edmunds W M. The characteristics of groundwater resources and their changes under the impacts of human activity in the arid North-West China: a case study of the Shiyang River Basin[J]. Journal of Arid Environments, 2005, 61(2): 277−295. doi: 10.1016/j.jaridenv.2004.07.014
|
[3] |
Du J, Yang P L, Li Y K, et al. Influence of the irrigation, fertilization and groundwater depth on wheat yield and nitrate nitrogen leaching[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(2): 57−64.
|
[4] |
Xing G X, Zhu Z L. An assessment of N loss from agricultural fields to the environment in China[J]. Nutrient Cycling in Agroecosystems, 2000, 57(1): 67−73. doi: 10.1023/A:1009717603427
|
[5] |
Wang Q, Li F R, Zhao L, et al. Effects of irrigation and nitrogen application rates on nitrate nitrogen distribution and fertilizer nitrogen loss, wheat yield and nitrogen uptake on a recently reclaimed sandy farmland[J]. Plant Soil, 2010, 337(1−2): 325−339. doi: 10.1007/s11104-010-0530-z
|
[6] |
Fort F, Cruz P, Catrice O, et al. Root functional trait syndromes and plasticity drive the ability of grassland fabaceae to tolerate water and phosphorus shortage[J]. Environmental and Experimental Botany, 2015, 110: 62−72. doi: 10.1016/j.envexpbot.2014.09.007
|
[7] |
Xi B Y, Li G D, Bloomberg M, et al. The effects of subsurface irrigation at different soil water potential thresholds on the growth and transpiration of Populus tomentosa in the North China Plain[J]. Australian Forestry, 2014, 77(3−4): 159−167. doi: 10.1080/00049158.2014.920552
|
[8] |
Yan X L, Dai T F, Jia L M. Evaluation of the cumulative effect of drip irrigation and fertigation on productivity in a poplar plantation[J/OL]. Annals of Forest Science, 2018, 75(1): 5 [2019−10−25]. https://xs.scihub.ltd/https://doi.org/ 10.1007/ s13595-017-0682-6 .
|
[9] |
Follett R F, Delgado J A. Nitrogen fate and transport in agricultural systems[J]. Soil Water Conserv, 2002, 57(6): 402−408.
|
[10] |
Dai X Q, Sui P, Xie G H, et al. Water use and nitrate nitrogen changes in intensive farmlands following introduction of poplar (Populus×euramericana) in a semi-arid region[J]. Arid Soil Research and Rehabilitation, 2006, 20(4): 281−294.
|
[11] |
Li J, Liu Y. Water and nitrate distributions as affected by layered textural soil and buried dripline depth under subsurface drip fertigation[J]. Irrigation Science, 2010, 29(6): 469−478.
|
[12] |
Saha R, Ghosh P K. Soil organic carbon stock, moisture availability and crop yield as influenced by residue management and tillage practices in maize–mustard cropping system under hill agro-ecosystem[J]. National Academy Science Letters, 2013, 36(5): 461−468. doi: 10.1007/s40009-013-0158-7
|
[13] |
Wang C Y, Liu W X, Li Q X, et al. Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions[J]. Field Crops Research, 2014, 165: 138−149. doi: 10.1016/j.fcr.2014.04.011
|
[14] |
Sandhu S S, Mahal S S, Vashist K K, et al. Crop and water productivity of bed transplanted rice as influenced by various levels of nitrogen and irrigation in northwest India[J]. Agricultural Water Management, 2012, 104: 32−39. doi: 10.1016/j.agwat.2011.11.012
|
[15] |
Xu C L, Tao H B, Tian B J, et al. Limited-irrigation improves water use efficiency and soil reservoir capacity through regulating root and canopy growth of winter wheat[J]. Field Crops Research, 2016, 196: 268−275. doi: 10.1016/j.fcr.2016.07.009
|
[16] |
彭亚静, 汪新颖, 张丽娟, 等. 根层调控对小麦−玉米种植体系氮素利用及土壤硝态氮残留的影响[J]. 中国农业科学, 2015, 48(11):2187−2198. doi: 10.3864/j.issn.0578-1752.2015.11.010
Peng Y J, Wang X Y, Zhang L J, et al. Effects of root layer regulation on nitrogen utilization and soil NO3–-N residue of wheat-maize system[J]. Science Agricultural Sinica, 2015, 48(11): 2187−2198. doi: 10.3864/j.issn.0578-1752.2015.11.010
|
[17] |
王烨. 毛白杨速生纸浆林地下滴灌施肥效应研究[D]. 北京: 北京林业大学, 2015.
Wang Y. Research on effects of nitrogen fertilization on tree-growth and its mechanisms of action in Populus tomentosa plantation[D]. Beijing: Beijing Forestry University, 2015.
|
[18] |
郭迎新, 秦大庸, 刘家宏, 等. 黑龙港地区降雨与土壤含水率的动态变化[J]. 灌溉排水学报, 2011, 30(1):80−83.
Guo Y X, Qin D Y, Liu J H, et al. Characteristics of soil moisture dynamic changes under rainfall infiltration in Heilonggang region[J]. Journal of Irrigation and Drainage, 2011, 30(1): 80−83.
|
[19] |
贺曰林, 王烨, 张宏锦, 等. 地表滴灌水氮耦合对毛白杨幼林生长及土壤水氮分布的影响[J]. 农业工程学报, 2018, 34(20):90−98. doi: 10.11975/j.issn.1002-6819.2018.20.012
He Y L, Wang Y, Zhang H J, et al. Coupling effects of water and nitrogen on tree growth and soil water-nitrogen distribution in young Populus tomentosa plantations under surface drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 90−98. doi: 10.11975/j.issn.1002-6819.2018.20.012
|
[20] |
Xue X R, Mai W X, Zhao Z Y, et al. Optimized nitrogen fertilizer application enhances absorption of soil nitrogen and yield of castor with drip irrigation under mulch film[J]. Industrial Crops and Products, 2017, 95: 156−162. doi: 10.1016/j.indcrop.2016.09.049
|
[21] |
Hanson B R, Simunek J, Hopmans J W. Evaluation of urea-nitrate fertigation with drip irrigation using numerical modelling[J]. Agricultural Water Management, 2006, 86(1−2): 102−113. doi: 10.1016/j.agwat.2006.06.013
|
[22] |
Fang Q X, Yu Q, Wang E L, et al. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat–maize double cropping system in the North China Plain[J]. Plant Soil, 2006, 284(1−2): 335−350. doi: 10.1007/s11104-006-0055-7
|
[23] |
Wiesler F, Horst W J. Root growth and nitrate utilization of maize cultivars under field conditions[J]. Plant Soil, 1994, 163(2): 267−277. doi: 10.1007/BF00007976
|
[24] |
Huang P, Zhang J, Ma D, et al. Atmospheric deposition as an important nitrogen load to a typical agro-ecosystem in the Huang-Huai-Hai Plain[J]. Atmospheric Environment, 2016, 129: 1−8. doi: 10.1016/j.atmosenv.2016.01.015
|
[25] |
Allard V, Martre P, Gouis J L. Genetic variability in biomass allocation to roots in wheat is mainly related to crop tillering dynamics and nitrogen status[J]. European Journal of Agronomy, 2013, 46: 68−76. doi: 10.1016/j.eja.2012.12.004
|
[26] |
Liu Y X, Zhang W P, Sun J H, et al. High morphological and physiological plasticity of wheat roots is conducive to higher competitive ability of wheat than maize in intercropping systems[J]. Plant Soil, 2015, 397(1−2): 387−399. doi: 10.1007/s11104-015-2654-7
|
[27] |
Croft S A, Hodge A, Pitchford J W. Optimal root proliferation strategies: the roles of nutrient heterogeneity, competition and mycorrhizal networks[J]. Plant Soil, 2012, 351(1−2): 191−206. doi: 10.1007/s11104-011-0943-3
|
[28] |
Muñoz-Romero V, Benítez-Vega J, López-Bellido R J, et al. Effect of tillage system on the root growth of spring wheat[J]. Plant Soil, 2010, 326(1−2): 97−107. doi: 10.1007/s11104-009-9983-3
|
[29] |
Di N, Liu Y, Mead D J, et al. Root-system characteristics of plantation-grown Populus tomentosa, adapted to seasonal fluctuation in the groundwater table[J]. Trees, 2018, 32(1): 137−149. doi: 10.1007/s00468-017-1619-2
|
[30] |
Lv G H, Kang Y H, Li L, et al. Effect of irrigation methods on root development and profile soil water uptake in winter wheat[J]. Irrigation Science, 2010, 28(5): 387−398. doi: 10.1007/s00271-009-0200-1
|
[31] |
Xue Q, Zhu Z, Musick J T, et al. Root growth and water uptake in winter wheat under deficit irrigation[J]. Plant Soil, 2003, 257(1): 151−161. doi: 10.1023/A:1026230527597
|
[32] |
Chen J, Wang P, Ma Z, et al. Optimum water and nitrogen supply regulates root distribution and produces high grain yields in spring wheat (Triticum aestivum L.) under permanent raised bed tillage in arid northwest China[J]. Soil & Tillage Research, 2018, 181: 117−126.
|
[33] |
闫小莉, 戴腾飞, 邢长山, 等. 水肥耦合对欧美 108 杨幼林表土层细根形态及分布的影响[J]. 生态学报, 2015, 35(11):3692−3701.
Yan X L, Dai T F, Xing C S, et al. Coupling effect of water and nitrogen on the morphology and distribution of fine root in surface soil layer of young Populus × euramericana plantation[J]. Journal of Ecology, 2015, 35(11): 3692−3701.
|
[34] |
Wang Z Q, Zhang W Y, Beebout S S, et al. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates[J]. Field Crop Resesrch, 2016, 193: 54−69. doi: 10.1016/j.fcr.2016.03.006
|
[35] |
Chen X P, Cui Z L, Fan M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514: 486−489. doi: 10.1038/nature13609
|
[36] |
Yu S, Ehrenfeld J G. The effects of changes in soil moisture on nitrogen cycling in acid wetland types of the New Jersey Pinelands (USA)[J]. Soil Biol Biochem, 2009, 41(12): 2394−2405. doi: 10.1016/j.soilbio.2009.06.012
|
[1] | Li Yuting, Ma Aiyun, Miao Zheng, Hao Yuanshuo, Dong Lihu. Effects of neighborhood competition on biomass and distribution of Larix olgensis[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20230322 |
[2] | Zhao Qingxia, Xia Yufang. Effects of mowing modes on biomass, crude protein and crude fat contents of Broussonetia papyrifera in karst area[J]. Journal of Beijing Forestry University, 2023, 45(6): 62-68. DOI: 10.12171/j.1000-1522.20210425 |
[3] | Song Runxian, Li Xiang, Mao Xiuhong, Wang Li, Chen Xiangli, Yao Junxiu, Zhao Xiyang, Li Shanwen. Transcriptome analysis of clone Populus deltoides ‘Zhonghe 1’ under cadmium stress[J]. Journal of Beijing Forestry University, 2021, 43(7): 12-21. DOI: 10.12171/j.1000-1522.20210037 |
[4] | Yao Junxiu, Chen Ganniu, Li Shanwen, Qiao Yanhui, Zhong Weiguo, Li Qinghua, Dong Yufeng, Wu Dejun. Physiological and biochemical properties and growth of Aigeiros clones under cadmium stress[J]. Journal of Beijing Forestry University, 2020, 42(4): 12-20. DOI: 10.12171/j.1000-1522.20190462 |
[5] | Xing Lei, Xue Hai-xia, Li Qing-he, Gao Ting-ting. Scaling from leaf to whole plant in biomass and nitrogen content of Nitraria tangutorum seedlings[J]. Journal of Beijing Forestry University, 2018, 40(2): 76-81. DOI: 10.13332/j.1000-1522.20170338 |
[6] | LIU Kun, CAO Lin, WANG Gui-bin, CAO Fu-liang. Biomass allocation patterns and allometric models of Ginkgo biloba[J]. Journal of Beijing Forestry University, 2017, 39(4): 12-20. DOI: 10.13332/j.1000-1522.20160374 |
[7] | DONG Dian, LIN Tian-xi, TANG Jing-yi, LIU Jing-chen, SUN Guo-wen, YAO Jie, CHENG Yan-xia. Biomass allocation patterns and allometric models of Tilia amurensis[J]. Journal of Beijing Forestry University, 2014, 36(4): 54-63. DOI: 10.13332/j.cnki.jbfu.2014.04.013 |
[8] | ZHAO Xi-yang, WANG Jun-hui, ZHANG Jin-feng, ZHANG Shou-gong, ZHANG Zeng-shun, MA Jian-wei, YUN Hui-ling, LI Kui-you. Variation analysis on chlorophyll fluorescence and growth traits of Catalpa bungei clones[J]. Journal of Beijing Forestry University, 2012, 34(3): 41-47. |
[9] | DUAN Wen-xia, ZHU Bo, LIU Rui, CHEN Shi, ZHOU Yu-ping, CHEN Fang. Biomass and soil carbon dynamics in Cryptomeria fortunei plantations[J]. Journal of Beijing Forestry University, 2007, 29(2): 55-59. |
[10] | CHENG Tang-ren, MA Qin-yan, FENG Zhong-ke, LUO Xu. Research on forest biomass in Xiaolong Mountains, Gansu Province[J]. Journal of Beijing Forestry University, 2007, 29(1): 31-36. DOI: 10.13332/j.1000-1522.2007.01.006 |
1. |
苏芝凤,黄德周,朱芷仪,陈荣枢,代廷皓,梁建宏,朱婧. 亚热带森林不同土壤类型团聚体酶活性及化学计量特征的差异. 环境科学. 2025(03): 1716-1728 .
![]() | |
2. |
陈荣枢,王汝儒,孙佳豪,黄玲,杨思娴,蒲纪龙,黄慧敏,朱婧. 漓江流域海拔、土壤及植被对土壤养分和酶化学计量比的影响. 广西植物. 2023(02): 242-252 .
![]() | |
3. |
王吕,马庆兵,姜华,寸兴刚,段新慧,何承刚. 云南寻甸县湿地草甸植被、土壤因子和微生物的特征. 草业科学. 2023(07): 1754-1765 .
![]() | |
4. |
郑武扬,王艳霞,王月江,冯刚刚. 石漠化治理区不同优势树种根际土壤酶活性与土壤理化性质和微生物数量的关系. 东北林业大学学报. 2021(01): 96-100 .
![]() | |
5. |
张艳,王冬梅. 北方土石山区不同植被恢复模式土壤酶活性研究. 农业研究与应用. 2021(01): 42-46 .
![]() | |
6. |
涂志华,周凌峰,黄艳萍,陈夙怡,陈金辉,李胜男. 海南岛黎母山国家自然保护区热带云雾林土壤酶活性的根际效应. 水土保持通报. 2021(03): 1-7 .
![]() | |
7. |
Zhouzhou Fan,Shuyu Lu,Shuang Liu,Zhaorong Li,Jiaxin Hong,Jinxing Zhou,Xiawei Peng. The effects of vegetation restoration strategies and seasons on soil enzyme activities in the Karst landscapes of Yunnan, southwest China. Journal of Forestry Research. 2020(05): 1949-1957 .
![]() |
|
8. |
郑武扬,王艳霞,王月江,冯刚刚. 喀斯特石漠化区不同植被治理模式对土壤质量的影响. 西部林业科学. 2020(04): 41-47 .
![]() | |
9. |
李永双,范周周,国辉,周金星,彭霞薇. 菌剂添加对不同树种根际土壤微生物及碳酸钙溶蚀的影响. 中国岩溶. 2020(06): 854-862 .
![]() | |
10. |
魏安琪,魏天兴,刘海燕,王莎. 黄土区刺槐和油松人工林土壤微生物PLFA分析. 北京林业大学学报. 2019(04): 88-98 .
![]() |