Citation: | Li Ying, Guo Yafen, Cui Xiaoyang. Effects of amino acid addition on carbon and nitrogen content and CH4 emission in temperate dark brown soil under different water conditions[J]. Journal of Beijing Forestry University, 2024, 46(5): 103-113. DOI: 10.12171/j.1000-1522.20230290 |
To clarify the response of carbon and nitrogen content and CH4 emission to different soil moisture conditions and the additions of amino acid in the dark brown soil of temperate forests, this study analyzed the relationship between soil pH and nitrogen, CH4 emission rate and soil carbon and nitrogen content, to assist related research on water management, carbon and nitrogen transformation, and greenhouse gas emission in temperate forest dark brown soil.
In this study, an indoor soil incubation was conducted with 40%, 60%, and 90% of the soil water holding capacity (WHC). Additionally, the potential effects of adding two amino acids on soil carbon and nitrogen content and CH4 emissions were explored. The Pearson correlation analysis was used to analyze the correlation between soil carbon and nitrogen content, pH and methane emission rate.
(1) Amino acid addition increased soil dissolved organic carbon (DOC) content, and meanwhile significantly increased NH+4-N content and CH4 emission rate. Leucine treatment increased the contents of DOC and NH+4-N by 21.39%−45.10%, respectively, and the CH4 emission rate was 3.20 times higher than that of CK, methionine treatment increased the contents of DOC and NH+4-N by 21.39%−72.71%, respectively. and the CH4 emission rate was 7.00 times higher than that of CK. (2) The influence of different amino acids on soil NO−3-N content was different. Leucine treatment increased NO−3-N content in soil by 8.41%, but its effect on nitrification in soil may have a lag, while methionine can significantly inhibit nitrification in soil, and NO−3-N content was significantly reduced by 37.90%. (3) Different soil moisture conditions had significant effects on soil DOC, NH+4-N, NO−3-N and CH4 emission rates. 90% WHC increased DOC content by 11.95%−19.91%, NH+4-N by 19.83%−35.46%, NO−3-N by 10.05%−23.79%, and CH4 emission rate increased to 1.48−2.06 times of the other two water conditions. Under 60% WHC condition, NH+4-N increased by 13.05%, NO−3-N content increased by 24.62%. 60% WHC may be the optimum water content for nitrification in temperate dark brown soil. The 90% WHC condition was conducive to the accumulation of DOC, and had an obvious inhibitory effect on NO−3-N production. (4) Soil pH was significantly positively correlated with NH+4-N content, positively correlated with NO−3-N content. The CH4 emission rate was significantly negatively correlated with NO−3-N content and NH+4-N content, and significantly positively correlated with DOC content.
Addition of different types of amino acids plays different roles on the carbon and nitrogen content and CH4 emissions of dark brown soil in temperate forests. Within a certain range, the increase of soil moisture content is beneficial to soil NH+4-N, NO−3-N, DOC accumulation and CH4 emission, but high soil moisture content inhibits the production of NO−3-N. Therefore, the role of amino acids and changes in moisture should be considered when studying carbon content, CH4 emissions and nitrogen transformation mechanisms in temperate forest dark brown soils.
[1] |
陈伏生, 曾德慧, 何兴元. 森林土壤氮素的转化与循环[J]. 生态学杂志, 2004, 23(5): 126−133.
Chen F S, Zeng D H, He X Y. Soil nitrogen transformation and cycling in forest ecosystem[J]. Chinese Journal of Ecology, 2004, 23(5): 126−133.
|
[2] |
郑利霞, 刘学军, 张福锁. 大气有机氮沉降研究进展[J]. 生态学报, 2007, 27(9): 3828−3834.
Zheng L X, Liu X J, Zhang F S. Atmospheric deposition of organic nitrogen: a review[J]. Acta Ecologica Sinica, 2007, 27(9): 3828−3834.
|
[3] |
Campbell C A, Zentner R P, Knipfel J E, et al. Thirty-year crop rotations and management practices effects on soil and amino nitrogen[J]. Soil Science Society of America Journal, 1991, 55(3): 739−745. doi: 10.2136/sssaj1991.03615995005500030017x
|
[4] |
Jones D L, Kielland K. Amino acid, peptide and protein mineralization dynamics in a taiga forest soil[J]. Soil Biology and Biochemistry, 2012, 55: 60−69. doi: 10.1016/j.soilbio.2012.06.005
|
[5] |
Trenberth K E, Dai A, van der Schrier G, et al. Global warming and changes in drought[J]. Nature Climate Change, 2014, 4: 17−22.
|
[6] |
周世兴, 邹秤, 肖永翔, 等. 模拟氮沉降对华西雨屏区天然常绿阔叶林土壤微生物生物量碳和氮的影响[J]. 应用生态学报, 2017, 28(1): 12−18.
Zhou S X, Zou C, Xiao Y X, et al. Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in natural evergreen broad-leaved forest in the Rainy Area of West China[J]. Chinese Journal of Applied Ecology, 2017, 28(1): 12−18.
|
[7] |
Deforest J L, Zak D R, Pregitzer K S, et al. Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest[J]. Soil Biology and Biochemistry, 2004, 36(6): 965−971. doi: 10.1016/j.soilbio.2004.02.011
|
[8] |
颜辰亦, 龚吉蕊, 张斯琦, 等. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J/OL]. 植物生态学报, 2024: 1−13[2024−05−04]. https://kns-cnki-net.webvpn.nefu.edu.cn/kcms/detail/11.3397.q.20240227.1351.002.html.
Yan C Y, Gong J R, Zhang S Q, et al. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China[J/OL]. Chinese Journal of Plant Ecology, 2024: 1−13[2024−05−04]. https://kns-cnki-net.webvpn.nefu.edu.cn/kcms/detail/11.3397.q.20240227.1351.002.html.
|
[9] |
裴广廷, 马红亮, 林伟, 等. 氨基酸添加对亚热带森林红壤氮素转化的影响[J]. 生态学报, 2015, 35(23): 7774−7784.
Pei G T, Ma H L, Lin W, et al. Effects of amino acid additions on nitrogen transformation in subtropical forest soil[J]. Acta Ecologica Sinica, 2015, 35(23): 7774−7784.
|
[10] |
朱灵, 张梦瑶, 高永恒. 高寒草原土壤有机碳矿化对水氮添加的响应[J]. 水土保持通报, 2020, 40(1): 30−37.
Zhu L, Zhang M Y, Gao Y H. Response of soil organic carbon mineralization to water and nitrogen addition in alpine steppe[J]. Bulletin of Soil and Water Conservation, 2020, 40(1): 30−37.
|
[11] |
黄思彤, 马亚培, 李宇轩, 等. 氮沉降背景下生物炭输入对土壤可溶性有机质和无机氮的影响[J]. 亚热带资源与环境学报, 2023, 18(2): 56−61.
Huang S T, Ma Y P, Li Y X, et al. Effects of biochar input on soil soluble organic matter and inorganic nitrogen under the background of nitrogen deposition[J]. Journal of Subtropical Resources and Environment, 2023, 18(2): 56−61.
|
[12] |
魏春兰, 马红亮, 高人, 等. 模拟氮沉降对森林土壤可溶性有机碳的影响[J]. 亚热带资源与环境学报, 2013, 8(4): 16−24.
Wei C L, Ma H L, Gao R, et al. Effects of nitrogen deposition on soluble organic carbon: a simulation study in subtropical forest soils[J]. Journal of Subtropical Resources and Environment, 2013, 8(4): 16−24.
|
[13] |
陈香碧, 王嫒华, 胡乐宁, 等. 红壤丘陵区水田和旱地土壤可溶性有机碳矿化对水分的响应[J]. 应用生态学报, 2014, 25(3): 752−758.
Chen X B, Wang Y H, Hu Y N, et al. Response of mineralization of dissolved organic carbon to soil moisture in paddy and upland soils in hilly red soil region[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 752−758.
|
[14] |
郝静, 郭亚芬, 高雷. 小兴安岭典型森林土壤中外源丙氨酸的潜在周转差异[J]. 应用生态学报, 2022, 33(12): 3237−3244.
Hao J, Guo Y F, Gao L. Potential turnover differences of exogenous alanine in soils of typical forests in the Xiaoxing’an Mountains, China[J]. Chinese Journal of Applied Ecology, 2022, 33(12): 3237−3244.
|
[15] |
于淑华, 张丽霞, 谢雪迎, 等. 不同水分模式对山东茶园土壤氮素动态的影响 [J]. 水土保持学报, 2021, 35(4): 289−298.
Yu S H, Zhang L X, Xie X Y, et al. Effects of water regimes on soil nitrogen dynamics in tea garden in Shandong Province[J]. Journal of Soil and Water Conservation, 2021, 35(4): 289−298.
|
[16] |
刘超, 王宪伟, 宋艳宇, 等. 增温对冻土区泥炭沼泽土壤孔隙水甲烷关联微生物和溶解性有机碳的影响[J]. 生态学报, 2021, 41(1): 184−193.
Liu C, Wang X W, Song Y Y, et al. Effects of warming on abundances of methane-related microorganisms and concentration of dissolved organic carbon in soil pore water of permafrost peat swamp in Daxing’anling[J]. Acta Ecologica Sinica, 2021, 41(1): 184−193.
|
[17] |
张艺, 王春梅, 许可, 等. 若尔盖湿地土壤温室气体排放对模拟氮沉降增加的初期响应[J]. 北京林业大学学报, 2016, 38(8): 54−63.
Zhang Y, Wang C M, Xu K, et al. Short-term effect of increasing nitrogen deposition on greenhouse gas emissions in Zoige Wetland, western China[J]. Journal of Beijing Forestry University, 2016, 38(8): 54−63.
|
[18] |
李平, 魏玮, 郎漫. 不同水分对半干旱地区砂壤土温室气体排放的短期影响[J]. 农业环境科学学报, 2021, 40(5): 1124−1132.
Li P, Wei W, Lang M. Short-term effects of different soil moisture contents on greenhouse gas emissions from sandy loam soil in semi-arid regions[J]. Journal of Agro-Environment Science, 2021, 40(5): 1124−1132.
|
[19] |
Castro M S, Steudler P A, Melillo J M, et al. Factors controlling atmospheric methane consumption by temperate forest soils[J]. Global Biogeochemical Cycles, 1995, 9(1): 1−10. doi: 10.1029/94GB02651
|
[20] |
张涵, 唐常源, 禤映雪, 等. 珠江口红树林土壤甲烷和二氧化碳通量特征及其影响因素研究[J]. 生态环境学报, 2022, 31(5): 939−948.
Zhang H, Tang C Y, Xuan Y X, et al. The regular pattern and influencing factors of CO2 and CH4 fluxes from mangrove soil[J]. Ecology and Environment Science, 2022, 31(5): 939−948.
|
[21] |
Noll L, Zhang S, Wanek W. Novel high-throughput approach to determine key processes of soil organic nitrogen cycling: gross protein depolymerization and microbial amino acid uptake[J]. Soil Biology and Biochemistry, 2019, 130: 73−81. doi: 10.1016/j.soilbio.2018.12.005
|
[22] |
Hill P W, Jones D L. Plant-microbe competition: does injection of isotopes of C and N into the rhizosphere effectively characterise plant use of soil N?[J]. New Phytologist, 2019, 221(2): 796−806. doi: 10.1111/nph.15433
|
[23] |
Ma Q, Wen Y, Wang D, et al. Farmyard manure applications stimulate soil carbon and nitrogen cycling by boosting microbial biomass rather than changing its community composition[J/OL]. Soil Biology and Biochemistry, 2020, 144: 107760[2023−12−21]. https://doi.org/10.1016/j.soilbio.2020.107760.
|
[24] |
高雷. 东北八种森林类型土壤有效氮、动态及植物吸收特征[D]. 哈尔滨: 东北林业大学, 2021.
Gao L. Pool size and dynamics of soil available nitrogen and plant uptake characteristics in eight forest types in northeast China[D]. Harbin: Northeast Forestry University, 2021.
|
[25] |
Ma H L, Imran S, Gao R, et al. Contrasting effects of alanine and methionine on nitrogen ammonification and nitrification, and nitrous oxide emissions in subtropical forest soil[J]. Journal of Soil Science and Plant Nutrition, 2021, 21: 2967−2979.
|
[26] |
Li S, Zhang S, Pu Y, et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain[J]. Soil and Tillage Research, 2016, 155: 289−297. doi: 10.1016/j.still.2015.07.019
|
[27] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
Lu R K. Methods of soil agricultural chemical analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000.
|
[28] |
翁晓虹, 隋心, 李梦莎, 等. 模拟氮沉降对三江平原小叶章湿地土壤微生物碳源利用能力的影响[J]. 环境科学, 2022, 43(9): 4674−4683.
Weng X H, Sui X, Li M S, et al. Effects of simulated nitrogen deposition on soil microbial carbon metabolism in Calamagrostis angustifolia wetland in Sanjiang Plain[J]. Environmental Sciences, 2022, 43(9): 4674−4683.
|
[29] |
元晓春, 陈岳民, 袁硕, 等. 氮沉降对杉木人工幼林土壤溶液可溶性有机物质浓度及光谱学特征的影响[J]. 应用生态学报, 2017, 28(1): 1−11.
Yuan X C, Chen Y M, Yuan S, et al. Effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter in soil solution in a young Cunninghamia lanceolata plantation[J]. Chinese Journal of Applied Ecology, 2017, 28(1): 1−11.
|
[30] |
Wang M T, Liao Q X, Zhao C, et al. The fate of litter-derived dissolved organic carbon in forest soils: results from an incubation experiment[J]. Biogeochemistry, 2019, 144(2): 133−147. doi: 10.1007/s10533-019-00576-3
|
[31] |
Gao W L, Zhao W, Yang H, et al. Effects of nitrogen addition on soil inorganic N content and soil N mineralization of a cold-temperate coniferous forest in Great Xing’an Mountains[J]. Acta Ecologica Sinica, 2015, 35(5): 130−136. doi: 10.1016/j.chnaes.2015.07.003
|
[32] |
李琛琛, 刘宁, 郭晋平, 等. 氮沉降对华北落叶松叶特性和林下土壤特性的短期影响[J]. 生态环境学报, 2014, 23(12): 1924−1932.
Li C C, Liu N, Guo J P, et al. Short term effect of nitrogen deposition on needle of Larix and forest soil[J]. Ecology and Environmental Sciences, 2014, 23(12): 1924−1932.
|
[33] |
沈月, 依艳丽. 不同因素交互作用对棕壤硝态氮累积及pH值的影响[J]. 植物营养与肥料学报, 2013, 19(5): 1174−1182.
Shen Y, Yi Y L. Effects of interaction of different factors on nitrate nitrogen accumulation and pH of brown soil[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(5): 1174−1182.
|
[34] |
Francisco S S, Urrutia O, Martin V, et al. Efficiency of urease and nitrification inhibitors in reducing ammonia volatilization from diverse nitrogen fertilizers applied to different soil types and wheat straw mulching[J]. Journal of the Science of Food and Agriculture, 2011, 91(9): 1569−1575. doi: 10.1002/jsfa.4349
|
[35] |
Kader M A, Sleutel S, Begum S A, et al. Nitrogen mineralization in sub-tropical paddy soils in relation to soil mineralogy, management, pH, carbon, nitrogen and iron contents[J]. European Journal of Soil Science, 2013, 64(1): 47−57.
|
[36] |
Chen Z, Ding W, Xu Y, et al. Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil: Evidences from a 15N tracing study to literature synthesis[J]. Soil Biology and Biochemistry, 2015, 91: 65−75. doi: 10.1016/j.soilbio.2015.08.026
|
[37] |
Wolf I, Brumme R. Dinitrogen and nitrous oxide formation in beech forest floor and mineral soils[J]. Soil Science Society of America Journal, 2003, 67(6): 1862−1868. doi: 10.2136/sssaj2003.1862
|
[38] |
Wang D, Chadwick D R, Hill P W, et al. Tracing the mineralization rates of C, N and S from cysteine and methionine in a grassland soil: A 14C and 35S dual-labelling study[J]. Soil Biology and Biochemistry, 2023, 177: 108906. doi: 10.1016/j.soilbio.2022.108906
|
[39] |
He X Q, Li M X, Zhou M H, Gross nitrogen transformations and ammonia oxidizers affected by nitrification inhibitors and/or organic amendments in a calcareous soil: a 15N tracing study[J]. Applied Soil Ecology, 2023, 188: 104926.
|
[40] |
Lisa Y S, Daniel J A. Ammonium limitation results in the loss of ammonia-oxidizing activity in Nitrosomonas europaea[J]. Applied and Environmental Microbiology, 1998, 64(4): 1514−1521. doi: 10.1128/AEM.64.4.1514-1521.1998
|
[41] |
栗方亮, 李忠佩, 刘明, 等. 氮素浓度和水分对水稻土硝化作用和微生物特性的影响[J]. 中国生态农业学报, 2012, 20(9): 1113−1118.
Li F L, Li Z P, Liu M, et al. Effects of different concentrations of nitrogen and soil moistures on paddy soil nitrification and microbial characteristics[J]. Chinese Journal of Eco-Agriculture, 2012, 20(9): 1113−1118.
|
[42] |
Marcos M S, Bertiller M B, Cisneros H S, et al. Nitrification and ammonia-oxidizing bacteria shift in response to soil moisture and plant litter quality in arid soils from the Patagonian Monte[J]. Pedobiologia, 2016, 59(1−2): 1−10. doi: 10.1016/j.pedobi.2015.11.002
|
[43] |
Smith K A, Ball T, Conen F, et al. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes[J]. European Journal of Soil Science, 2018, 69(1): 10−20. doi: 10.1111/ejss.12539
|
[44] |
Liu J, Xue D, Chen H, et al. Effects of nitrogen addition on anaerobic oxidation of methane in Zoige Plateau peatlands[J]. Ecological Indicators, 2021, 129(11−12): 108018.
|
[45] |
包振宗. 水分变化和模拟氮沉降对高寒湿地土壤CH4、CO2和N2O排放的影响[D]. 乌鲁木齐: 新疆农业大学, 2018.
Bao Z Z. Effect of water changes and nitrogen deposition on CH4, CO2 and N2O emission in alpine wetland soil[D]. Urumqi: Xinjiang Agricultural University, 2018.
|
[46] |
Praeg N, Wagner A O, Illmer P. Effects of fertilisation, temperature and water content on microbial properties and methane production and methane oxidation in subalpine soils[J]. European Journal of Soil Biology, 2014, 65: 96−106. doi: 10.1016/j.ejsobi.2014.10.002
|
[47] |
李平, 郎漫, 李淼, 等. 不同施肥处理对东北黑土温室气体排放的短期影响[J]. 环境科学, 2018, 39(5): 2360−2367.
Li P, Lang M, Li M, et al. Short-term effects of different fertilization treatments on greenhouse gas emissions from northeast black soil[J]. Environmental Science, 2018, 39(5): 2360−2367.
|
[1] | Wang Xiaoshuang, Chen Jungang, Zhang Yunhai, Yu Xinxiao. Effects of seasonal nitrogen addition on soil net nitrogen mineralization in typical temperate grasslands of Inner Mongolia, northern China[J]. Journal of Beijing Forestry University, 2024, 46(12): 63-70. DOI: 10.12171/j.1000-1522.20230018 |
[2] | Yang Jiaming, Hu Jian, Pan Junxiao, Peng Yifei, Wei Chunxue, Wang Jinsong, Tian Dashuan, Zhou Qingping. Effects of nitrogen addition on soil aggregate distribution and carbon and nitrogen contents in alpine meadow[J]. Journal of Beijing Forestry University, 2022, 44(12): 102-110. DOI: 10.12171/j.1000-1522.20210439 |
[3] | Wang Longfeng, Xiao Weiwei, Wang Shuli. Changes of soil aggregate stability and carbon-nitrogen distribution after artificial management of natural secondary forests[J]. Journal of Beijing Forestry University, 2022, 44(7): 97-106. DOI: 10.12171/j.1000-1522.20210497 |
[4] | Shang Shuaishuai, Song Minghua, Wang Chunmei, Qiu Jingcong, Wang Xinqing, Wang Shiqi, Cui Jiayi. Effects of long-term polymorphic nitrogen addition on soil N2O emission in temperate artificial Quercus liaotungensis forests[J]. Journal of Beijing Forestry University, 2022, 44(6): 63-73. DOI: 10.12171/j.1000-1522.20220136 |
[5] | Xiong Kai, Zhao Yujuan, Chen Jian, Zhang Yun, Zhao Guangdong, Yang Hongguo, Shi Zuomin, Xu Gexi. Spatial heterogeneity of soil pH and nutrients in Miyaluo Subalpine dark coniferous forest of western Sichuan, southwestern China[J]. Journal of Beijing Forestry University, 2022, 44(2): 55-64. DOI: 10.12171/j.1000-1522.20200422 |
[6] | XU Ke, WANG Chun-mei, ZHANG Yi, YANG Xin-tong, HAN Jin-feng, GUI Rong-rong. Effects of different nitrogen addition forms and levels on N2O emission in the temperate forest soil[J]. Journal of Beijing Forestry University, 2017, 39(3): 74-80. DOI: 10.13332/j.1000-1522.20160103 |
[7] | SONG Jin-feng, LIU Xing-ping, SUN Jin-bing, HUANG Wen-bin, MA Rui, CUI Xiao-yang.. Sustained release and the kinetics of phosphorus from dark brown forest soils by organic acids.[J]. Journal of Beijing Forestry University, 2015, 37(10): 1-8. DOI: 10.13332/j.1000-1522.20140008 |
[8] | CHEN Li-xin, JIANG Yi, BU Fan, DUAN Wen-biao, MA Hai-juan. Effects of organic acid on organic phosphorus and mineralization of typical temperate forest soils[J]. Journal of Beijing Forestry University, 2014, 36(3): 75-82. DOI: 10.13332/j.cnki.jbfu.2014.03.011 |
[9] | NIU Jian-zhi, YU Xin-xiao, ZHANG Zhi-qiang.. Soil preferential flow in the dark coniferous forest ecosystem of Gongga Mountain, Sichuan Province of southwestern China.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 246-254. |
[10] | NIU Jian-zhi, YU Xin-xiao, ZHANG Zhi-qiang.. Movement characteristics analysis of soil water flow in the dark coniferous forest ecosystem of Gongga Mountain, Sichuan Province of southwestern China.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 240-245. |
1. |
黄娜,刘洪海. 木材吸湿特性及其机理研究综述. 家具. 2025(02): 7-11 .
![]() |