• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
XU Ke, WANG Chun-mei, ZHANG Yi, YANG Xin-tong, HAN Jin-feng, GUI Rong-rong. Effects of different nitrogen addition forms and levels on N2O emission in the temperate forest soil[J]. Journal of Beijing Forestry University, 2017, 39(3): 74-80. DOI: 10.13332/j.1000-1522.20160103
Citation: XU Ke, WANG Chun-mei, ZHANG Yi, YANG Xin-tong, HAN Jin-feng, GUI Rong-rong. Effects of different nitrogen addition forms and levels on N2O emission in the temperate forest soil[J]. Journal of Beijing Forestry University, 2017, 39(3): 74-80. DOI: 10.13332/j.1000-1522.20160103

Effects of different nitrogen addition forms and levels on N2O emission in the temperate forest soil

More Information
  • Received Date: March 27, 2016
  • Revised Date: June 02, 2016
  • Published Date: February 28, 2017
  • Nitrous oxide (N2O) emission can be affected by the amounts and forms of nitrogen (N) available in soils. To improve our understanding of the response of N2O emission to different N addition levels and forms, a manipulative field experiment was conducted to investigate the effects of different forms (ammonium sulfate, As:(NH4)2SO4; sodium nitrate, Na:NaNO3; ammonium nitrate, AN:NH4NO3) and levels (control: 0 kg/(ha·year); low N, LN: 50 kg/(ha·year); MN: 100 kg/(ha·year) and high N, HN: 150 kg/(ha·year)) of N addition on N2O emission of temperate Pinus tabuliformis forest soil using the static closed chamber method at Experimental Forest Station of Beijing Forestry University in Beijing, northern China. Our results showed that soil N2O emission showed a trend of seasonal variation: higher in summer (May to August) but relatively low in the remaining seasons. The minimum value appeared in January. Different levels of N addition increased annual N2O emission in the order of HN>MN>LN>control. The three N forms increased annual N2O emission in the order of AN>As>Na, but the difference was insignificant (P>0.05) between As and AN or As and Na. These results suggested that the N2O emission from temperate forest soil sensitively responded to N addition forms and levels. In addition, soil temperature, air temperature and water-filled pore space also influenced soil N2O fluxes. Annual soil N2O emission factors ranged from 0.34% to 0.94% for different N addition treatments, with an overall emission factor value of 0.364%. The emission factor values were far less than the mean default emission factor proposed by the Intergovernmental Panel on Climate Change (IPCC).
  • [1]
    FANG Y, YOH M, KOBA K, et al. Nitrogen deposition and forest nitrogen cycling along an urban-rural transect in southern China[J]. Global Change Biology, 2011, 17(2): 872-885. doi: 10.1111/j.1365-2486.2010.02283.x
    [2]
    GALLOWAY J N, COWLING E B. Reactive nitrogen and the world: 200 years of change[J]. AMBIO: A Journal of the Human Environment, 2002, 31(2): 64-71. doi: 10.1579/0044-7447-31.2.64
    [3]
    BOBBINK R, HICKS K, GALLOWAY J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis[J]. Ecological Applications, 2010, 20(1): 30-59. doi: 10.1890/08-1140.1
    [4]
    BUTTERBACH-BAHL K, ROTHE A, PAPEN H. Effect of tree distance on N2O and CH4 fluxes from soils in temperate forest ecosystems[J]. Plant and Soil, 2002, 240(1): 91-103. doi: 10.1023/A:1015828701885
    [5]
    SOLOMON S. IPCC (2007): climate change the physical science basis[J]. American Geophysical Union, 2007, 9(1): 123-124.
    [6]
    RAVISHANKARA A, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326: 123-125. doi: 10.1126/science.1176985
    [7]
    HANSEN J E, LACIS A A. Sun and dust versus greenhouse gases: an assessment of their relative roles in global climate change[J]. Nature, 1990, 346: 713-719. doi: 10.1038/346713a0
    [8]
    BRUMME R, VERCHOT L V, MARTIKAINEN P J, et al. Contribution of trace gases nitrous oxide (N2O) and methane (CH4) to the atmospheric warming balance of forest biomes[J]. Seb Experimental Biology, 2005, 27(7): 293-317. http://europepmc.org/abstract/MED/17633041
    [9]
    方华军, 程淑兰, 于贵瑞, 等.大气氮沉降对森林土壤甲烷吸收和氧化亚氮排放的影响及其微生物学机制[J].生态学报, 2014, 34(17): 4799-4806. http://d.old.wanfangdata.com.cn/Periodical/stxb201417001

    FANG H J, CHENG S L, YU G R, et al. Microbial mechanisms responsible for the effects of atmospheric nitrogen deposition on methane uptake and nitrous oxide emission in forest soils: a review[J]. Acta Ecologica Sinica, 2014, 34(17): 4799-4806. http://d.old.wanfangdata.com.cn/Periodical/stxb201417001
    [10]
    莫江明, 方运霆, 林而达, 等.鼎湖山主要森林土壤N2O排放及其对模拟N沉降的响应[J].植物生态学报, 2006, 30(6): 901-910. doi: 10.3321/j.issn:1005-264X.2006.06.003

    MO J M, FANG Y T, LIN E D, et al. Soil N2O emission and its response to simulated N deposition in the main forests of Ding Hushan in subtropical china[J]. Chinese Journal of Plant Ecology, 2006, 30(6): 901-910. doi: 10.3321/j.issn:1005-264X.2006.06.003
    [11]
    ADAMS M, INESON P, DAN B, et al. Soil functional responses to excess nitrogen inputs at global scale[J]. Ambio A Journal of the Human Environment, 2004, 33(8): 530-536. doi: 10.1579/0044-7447-33.8.530
    [12]
    CHEN G C, TAM N F Y, YE Y. Spatial and seasonal variations of atmospheric N2O and CO2 fluxes from a subtropical mangrove swamp and their relationships with soil characteristics[J]. Soil Biology & Biochemistry, 2012, 48(4): 175-181. https://www.sciencedirect.com/science/article/abs/pii/S0038071712000508
    [13]
    ZHU J, MULDER J, SOLHEIMSLID S O, et al. Functional traits of denitrification in a subtropical forest catchment in China with high atmogenic N deposition[J]. Soil Biology & Biochemistry, 2013, 57(3): 577-586. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=52b212985a958c0e6b39fc77f5ccbee8
    [14]
    PENG Q, QI Y, DONG Y, et al. Soil nitrous oxide emissions from a typical semiarid temperate steppe in Inner Mongolia: effects of mineral nitrogen fertilizer levels and forms[J]. Plant and Soil, 2011, 342(1-2): 345-357. doi: 10.1007/s11104-010-0699-1
    [15]
    WANG L, CAI Z. Nitrous oxide production at different soil moisture contents in an arable soil in China[J]. Soil Science & Plant Nutrition, 2008, 54(5): 786-793. doi: 10.1111/j.1747-0765.2008.00297.x
    [16]
    WANG F, LI J, WANG X, et al. Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China[J]. Sci Rep, 2014, 4: 5615-5615. https://www.nature.com/articles/srep05615
    [17]
    BAI E, LI W, LI S L, et al. Pulse increase of soil N2O emission in response to N addition in a temperate forest on Mt Changbai, Northeast China[J]. Plos One, 2014, 9(7): e102765-e102765. doi: 10.1371/journal.pone.0102765
    [18]
    LIU X, DONG Y, QI Y, et al. Response of N2O emission to water and nitrogen addition in temperate typical steppe soil in Inner Mongolia, China[J]. Soil and Tillage Research, 2015, 151(1): 9-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=27d040258af08910c79d76190dfa17ae
    [19]
    HATCH D, JARVIS S, PHILIPPS L. Field measurement of nitrogen mineralization using soil core incubation and acetylene inhibition of nitrification[J]. Plant and Soil, 1990, 124(1): 97-107. doi: 10.1007/BF00010937
    [20]
    DONG Y, ZHANG S, QI Y, et al. Fluxes of CO2, N2O and CH4 from a typical temperate grassland in Inner Mongolia and its daily variation[J]. Chinese Science Bulletin, 2000, 45(17): 1590-1594. doi: 10.1007/BF02886219
    [21]
    MATSON A, PENNOCK D, BEDARD-HAUGHN A. Methane and nitrous oxide emissions from mature forest stands in the boreal forest, Saskatchewan, Canada[J]. Forest Ecology and Management, 2009, 258(7): 1073-1083. doi: 10.1016/j.foreco.2009.05.034
    [22]
    YUPING Y, LIQING S, MIN C, et al. Fluxes of CH4 and N2O from soil under a tropical seasonal rain forest in Xishuangbanna, Southwest China[J]. Journal of Environmental Sciences, 2008, 20(2): 207-215. doi: 10.1016/S1001-0742(08)60033-9
    [23]
    VAN GROENIGEN J W, VELTHOF G L, VAN DER BOLT F J, et al. Seasonal variation in N2O emissions from urine patches: effects of urine concentration, soil compaction and dung[J]. Plant and Soil, 2005, 273(1-2): 15-27. doi: 10.1007/s11104-004-6261-2
    [24]
    DONOSO L, SANTANA R, SANHUEZA E. Seasonal variation of N2O fluxes at a tropical savannah site: soil consumption of N2O during the dry season[J]. Geophysical Research Letters, 1993, 20(13): 1379-1382. doi: 10.1029/93GL01537
    [25]
    欧阳扬, 李叙勇.干湿交替频率对不同土壤CO2和N2O释放的影响[J].生态学报, 2013, 33(4): 1251-1259. http://d.old.wanfangdata.com.cn/Periodical/stxb201304025

    OUYANG Y, LI X Y. Impacts of drying-wetting cycles on CO2 and N2O emissions from soils in different ecosystems[J]. Acta Ecologica Sinica, 2013, 33(4): 1251-1259. http://d.old.wanfangdata.com.cn/Periodical/stxb201304025
    [26]
    LIN S, IQBAL J, HU R, et al. Nitrous oxide emissions from rape field as affected by nitrogen fertilizer management: a case study in Central China[J]. Atmospheric Environment, 2011, 45(9): 1775-1779. doi: 10.1016/j.atmosenv.2011.01.003
    [27]
    陈哲, 陈媛媛, 高霁, 等.不同施肥措施对黄河上游灌区油葵田土壤N2O排放的影响[J].应用生态学报, 2015, 26(1): 129-139. http://d.old.wanfangdata.com.cn/Periodical/yystxb201501018

    CHEN Z, CHEN Y Y, GAO J, et al. Effects of different fertilization measures on N2O emission in oil sunflower field in irrigation area of upper Yellow River[J]. The Journal of Applied Ecology, 2015, 26(1): 129-139. http://d.old.wanfangdata.com.cn/Periodical/yystxb201501018
    [28]
    王海云, 邢光熹.不同施氮水平对稻麦轮作农田氧化亚氮排放的影响[J].农业环境科学学报, 2009, 28(12): 2631-2636. doi: 10.3321/j.issn:1672-2043.2009.12.030

    WANG H Y, XING G X. Effect of nitrogen fertilizer rates on nitrous oxide emission from paddy field under rice-wheat rotation[J]. Journal of Agro-Environment Science, 2009, 28(12): 2631-2636. doi: 10.3321/j.issn:1672-2043.2009.12.030
    [29]
    蔺照兰, 王春梅, 王汝南.冻融期温带森林土壤N2O排放对模拟大气氮沉降的响应[J].生态环境学报, 2012, 21(11): 1804-1809. doi: 10.3969/j.issn.1674-5906.2012.11.006

    LIN Z L, WANG C M, WANG R N. Effects of simulated N deposition on N2O emssion from temperate forest soil subject to freezing-thawing process[J]. Ecology and Environmental Sciences, 2012, 21(11): 1804-1809. doi: 10.3969/j.issn.1674-5906.2012.11.006
    [30]
    ZHU J, MULDER J, WU L P, et al. Spatial and temporal variability of N2O emissions in a subtropical forest catchment in China[J]. Biogeosciences, 2013, 10(3): 1309-1321. doi: 10.5194/bg-10-1309-2013
    [31]
    HEFTING M M, BOBBINK R, DE CALUWE H. Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones[J]. Journal of Environmental Quality, 2003, 32(4): 1194-1203. doi: 10.2134/jeq2003.1194
    [32]
    DAVIDSON E A. Sources of nitric oxide and nitrous oxide following wetting of dry soil[J]. Soil Science Society of America Journal, 1992, 56(1): 95-102. doi: 10.2136/sssaj1992.03615995005600010015x
    [33]
    LIU D Y, SONG C C. Effects of inorganic nitrogen and phosphorus enrichment on the emission of N2O from a freshwater marsh soil in Northeast China[J]. Environmental Earth Sciences, 2010, 60(4): 799-807. doi: 10.1007/s12665-009-0217-z
    [34]
    STAPLETON L M, CROUT N M J, SÄWSTRÖM C, et al. Microbial carbon dynamics in nitrogen amended Arctic tundra soil: measurement and model testing[J]. Soil Biology and Biochemistry, 2005, 37(11): 2088-2098. doi: 10.1016/j.soilbio.2005.03.016
    [35]
    LIU D Y, SONG C C. Effects of phosphorus enrichment on mineralization of organic carbon and contents of dissolved carbon in a freshwater marsh soil[J]. China Environmental Science, 2008, 28(9): 769-774. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjkx200809001
    [36]
    LUBETSKY J, STEINER B A, LANZA R. 2006 IPCC guidelines for national greenhouse gas inventories[M]. Arlington: Institute for Global Environmental Strategies, 2006.
    [37]
    HE F F, JIANG R F, CHEN Q, et al. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China[J]. Environmental Pollution, 2009, 157(5): 1666-1672. doi: 10.1016/j.envpol.2008.12.017
  • Cited by

    Periodical cited type(3)

    1. 孔丽娟,隋媛媛,刘爽,陈丽梅,周丽娜,刘春慧,姜玲,李松,于海业. 最优光谱特征变量反演颗粒物污染生菜的生理信息. 光谱学与光谱分析. 2024(04): 1128-1135 .
    2. 樊丽,黄云,胡伟,张辰,刘艳. 高光谱技术在园艺学科研究的文献分析. 北方农业学报. 2023(01): 128-134 .
    3. 马保东,杨湘儒,蒋紫薇,车德福. 煤滞尘对叶片反射光谱与植被指数的影响与定量分析. 光谱学与光谱分析. 2023(06): 1947-1952 .

    Other cited types(1)

Catalog

    Article views (2050) PDF downloads (36) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return