• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Lei Xiangdong. Forest ecosystem service multi-functionality: definitions, indicators and simulation models for forest management[J]. Journal of Beijing Forestry University, 2024, 46(5): 1-11. DOI: 10.12171/j.1000-1522.20230327
Citation: Lei Xiangdong. Forest ecosystem service multi-functionality: definitions, indicators and simulation models for forest management[J]. Journal of Beijing Forestry University, 2024, 46(5): 1-11. DOI: 10.12171/j.1000-1522.20230327

Forest ecosystem service multi-functionality: definitions, indicators and simulation models for forest management

More Information
  • Received Date: October 09, 2023
  • Revised Date: February 16, 2024
  • Accepted Date: April 23, 2024
  • Available Online: April 24, 2024
  • Forest ecosystem multifunctionality (FEMF) is defined as the ability of forests to simultaneously provide multiple ecosystem functions and services. FEMF could be classified as ecosystem function multifunctionality and ecosystem service multifunctionality. In recent years, a large number of studies have been carried out in the field of ecology on the relationship between biodiversity and multifunctionality, as well as on the driving factors of multifunctionality, and have continued to be a hot topic. However, these research results are still insufficient in terms of application, especially in guiding forest management practices. Maximization of multiple functions and services has been the goal of forest management, but the involvement of FEMF in forest management is still limited, and it is urgently needed to strengthen the integration. This paper summarizes the definitions, indicators and optimization models for the FEMF linked with forest management. We concluded that the future direction will focus on the prediction of the change of forest services and FEMF, and the realization of FEMF maximization at forest management unit level. Emphasis should be given to forest management modelling and simulations to seek the most effective management strategies to mitigate trade-offs and enhance synergies of ecosystem services, and answer theoretical and practical questions on how forest management and climate change affect the balance and coordination between ecosystem services, as well as their spatiotemporal changes.

  • [1]
    Millennium Ecosystem Assessment. Ecosystems and human well-being: current state and trends: findings of the condition and trends working group [M]. Washington : Island Press, 2005.
    [2]
    王凯, 王聪, 冯晓明, 等. 生物多样性与生态系统多功能性的关系研究进展[J]. 生态学报, 2022, 42(1): 11−23. doi: 10.1016/j.chnaes.2020.11.008

    Wang K, Wang C, Feng X M, et al. Research progress on the relationship between biodiversity and ecosystem multifunctionality[J]. Acta Ecologica Sinica, 2022, 42(1): 11−23. doi: 10.1016/j.chnaes.2020.11.008
    [3]
    Messier C, Bauhus J, Sousa-Silva R, et al. For the sake of resilience and multifunctionality, let’s diversify planted forests![J]. Conservation Letters, 2021, 15: e12829.
    [4]
    Felton A, Belyazid S, Eggers J, et al. Climate change adaptation and mitigation strategies for production forests: trade-offs, synergies, and uncertainties in biodiversity and ecosystem services delivery in Northern Europe[J]. Ambio, 2024, 53(1): 1−27. doi: 10.1007/s13280-023-01909-1
    [5]
    Winkel G, Lovrić M, Muys B, et al. Governing Europe’s forests for multiple ecosystem services: opportunities, challenges, and policy options[J]. Forest Policy and Economics, 2022, 145: 102849. doi: 10.1016/j.forpol.2022.102849
    [6]
    Thrippleton T, Blattert C, Bont L G, et al. A multi-criteria decision support system for strategic planning at the Swiss forest enterprise level: coping with climate change and shifting demands in ecosystem service provisioning[J]. Frontiers in Forests and Global Change, 2021, 4: 693020. doi: 10.3389/ffgc.2021.693020
    [7]
    王兵. 生态连清理论在森林生态系统服务功能评估中的实践[J]. 中国水土保持科学, 2027, 14(1): 1−11, 151.

    Wang B. Practice of theory of ecological continuous inventory system in the evaluation of forest ecosystem service function[J]. Science of Soil and Water Conservation, 2027, 14(1): 1−11, 151.
    [8]
    兰洁, 雷相东, 何潇, 等. 吉林省天然阔叶混交林生态系统多功能性及驱动因素[J]. 生态学报, 2021, 41(13): 5128−5141.

    Lan J, Lei X D, He X, et al. Multi-functionality of natural mixed broad-leaved forests and driving forces in Jilin Province[J]. Acta Ecologica Sinica, 2021, 41(13): 5128−5141.
    [9]
    邹文涛, 何友均, 叶兵, 等. 基于Invest模型的森林生态系统服务功能评估研究进展[J]. 世界林业研究, 2020, 33(4): 19−24.

    Zou W T, He Y J, Ye B, et al. Research advances in forest ecosystem services evaluations based on the InVEST model[J]. World Forestry Research, 2020, 33(4): 19−24.
    [10]
    徐炜, 井新, 马志远, 等. 生态系统多功能性的测度方法[J]. 生物多样性, 2027, 24(1): 72−84.

    Xu W, Jing X, Ma Z Y, et al. A review on the measurement of ecosystem multifunctionality[J]. Biodiversity Science, 2027, 24(1): 72−84.
    [11]
    黄小波, 郎学东, 李帅锋, 等. 生态系统多功能性的指标选择与驱动因子: 研究现状与展望[J]. 生物多样性, 2021, 29(12): 2773−2786.

    Huang X B, Lang X D, Li S F, et al. Indicator selection and driving factors of ecosystem multifunctionality: research status and perspectives[J]. Biodiversity Science, 2021, 29(12): 2773−2786.
    [12]
    Yuan Z, Ali A, Ruiz-Benito P, et al. Above-and below-ground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environmental gradient[J]. Journal of Ecology, 2020, 108(5): 2012−2024. doi: 10.1111/1365-2745.13378
    [13]
    Ouyang S, Gou M, Lei P, et al. Plant functional trait diversity and structural diversity co-underpin ecosystem multifunctionality in subtropical forests[J]. Forest Ecosystems, 2023, 10: 100093. doi: 10.1016/j.fecs.2023.100093
    [14]
    Li S, Huang X, Lang X, et al. Cumulative effects of multiple biodiversity attributes and abiotic factors on ecosystem multifunctionality in the Jinsha River Valley of southwestern China[J]. Forest Ecology and Management, 2020, 472: 118281. doi: 10.1016/j.foreco.2020.118281
    [15]
    Lan J, Lei X, He X, et al. Multiple mechanisms drive biodiversity-ecosystem service multifunctionality but the dominant one depends on the level of multifunctionality for natural forests in northeast China[J]. Forest Ecology and Management, 2023, 542: 121101. doi: 10.1016/j.foreco.2023.121101
    [16]
    井新, 贺金生. 生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望[J]. 植物生态学报, 2021, 45(10): 1094−1111. doi: 10.17521/cjpe.2020.0154

    Jing X, He J S. Relationship between biodiversity, ecosystem multifunctionality and multiserviceability: literature overview and research advances[J]. Chinese Journal of Plant Ecology, 2021, 45(10): 1094−1111. doi: 10.17521/cjpe.2020.0154
    [17]
    中国林业科学研究院“多功能林业”编写组. 中国多功能林业发展道路探索 [M]. 北京: 中国林业出版社, 2010.

    Editorial Team of Multi-Functional Forestry of Chinese Academy of Forestry. Exploring multi-functional forestry development path of China[M]. Beijing: China Forestry Publishing House, 2010.
    [18]
    曾祥谓, 樊宝敏, 张怀清, 等. 我国多功能森林经营的理论探索与对策研究[J]. 林业资源管理, 2013(2): 10−27.

    Zeng X W, Fan B M, Zhang H Q, et al. A study on the theory and strategy of multifunctional forest management in China[J]. Forest Resources Management, 2013(2): 10−27.
    [19]
    陆元昌, 刘宪钊, 雷相东, 等. 人工林多功能经营技术体系[J]. 中南林业科技大学学报, 2017, 37(7): 1−10.

    Lu Y C, Liu X Z, Lei X D, et al. Technical system for plantation multi-function management[J]. Journal of Central South University of Forestry & Technology, 2017, 37(7): 1−10.
    [20]
    项文化, 雷相东. 森林生态系统多功能性及经营优化途径[J]. 中南林业科技大学学报, 2022, 42(10): 1−8.

    Xiang W H, Lei X D. Forest ecosystem multifunctionality and management optimization paths[J]. Journal of Central South University of Forestry & Technology, 2022, 42(10): 1−8.
    [21]
    Hector A, Bagchi R. Biodiversity and ecosystem multifunctionality[J]. Nature, 2007, 448: 188−190.
    [22]
    Manning P, van der Plas F, Soliveres S, et al. Redefining ecosystem multifunctionality[J]. Nature Ecology & Evolution, 2018, 2(3): 427−436.
    [23]
    Hölting L, Beckmann M, Volk M, et al. Multifunctionality assessments-more than assessing multiple ecosystem functions and services? A quantitative literature review[J]. Ecological Indicators, 2019, 103: 226−35. doi: 10.1016/j.ecolind.2019.04.009
    [24]
    Nocentini S, Travaglini D, Muys B. Managing mediterranean forests for multiple ecosystem services: research progress and knowledge gaps[J]. Current Forestry Reports, 2022, 8(2): 229−256. doi: 10.1007/s40725-022-00167-w
    [25]
    Irauschek F, Rammer W, Lexer M J. Evaluating multifunctionality and adaptive capacity of mountain forest management alternatives under climate change in the eastern alps[J]. European Journal of Forest Research, 2017, 136(5−6): 1051−1069. doi: 10.1007/s10342-017-1051-6
    [26]
    Peura M, Burgas D, Eyvindson K, et al. Continuous cover forestry is a cost-efficient tool to increase multifunctionality of boreal production forests in Fennoscandia[J]. Biological Conservation, 2018, 217: 104−112. doi: 10.1016/j.biocon.2017.10.018
    [27]
    Triviño M, Pohjanmies T, Mazziotta A, et al. Optimizing management to enhance multifunctionality in a boreal forest landscape[J]. Journal of Applied Ecology, 2017, 54(1): 61−70. doi: 10.1111/1365-2664.12790
    [28]
    Pohjanmies T, Eyvindson K, Triviño M, et al. Forest multifunctionality is not resilient to intensive forestry[J]. European Journal of Forest Research, 2021, 140(3): 537−549. doi: 10.1007/s10342-020-01348-7
    [29]
    Blattert C, Lemm R, Thees O, et al. Management of ecosystem services in mountain forests: review of indicators and value functions for model based multi-criteria decision analysis[J]. Ecological Indicators, 2017, 79: 391−409. doi: 10.1016/j.ecolind.2017.04.025
    [30]
    Felipe-Lucia M R, Soliveres S, Penone C, et al. Multiple forest attributes underpin the supply of multiple ecosystem services[J]. Nature Communications, 2018, 9(1): 4839. doi: 10.1038/s41467-018-07082-4
    [31]
    Brandt P, Abson D J, Dellasala D A, et al. Multifunctionality and biodiversity: Ecosystem services in temperate rainforests of the Pacific Northwest, USA[J]. Biological Conservation, 2014, 279: 362−371.
    [32]
    Snäll T, Triviño M, Mair L, et al. High rates of short-term dynamics of forest ecosystem services[J]. Nature Sustainability, 2021, 4(11): 951−957. doi: 10.1038/s41893-021-00764-w
    [33]
    Jonsson M, Bengtsson J, Moen J, et al. Stand age and climate influence forest ecosystem service delivery and multifunctionality[J]. Environmental Research Letters, 2020, 15(9): 0940a8. doi: 10.1088/1748-9326/abaf1c
    [34]
    Zeng Y L, Wu H L, Ouyang S, et al. Ecosystem service multifunctionality of Chinese fir plantations differing in stand age and implications for sustainable management[J]. Science of the Total Environment, 2021, 788: 147791. doi: 10.1016/j.scitotenv.2021.147791
    [35]
    Jönsson M, Snäll T, Leverkus A B. Ecosystem service multifunctionality of low-productivity forests and implications for conservation and management[J]. Journal of Applied Ecology, 2020, 57(4): 695−706. doi: 10.1111/1365-2664.13569
    [36]
    Gamfeldt L, Snall T, Bagchi R, et al. Higher levels of multiple ecosystem services are found in forests with more tree species[J]. Nature Communication, 2013, 4: 1340. doi: 10.1038/ncomms2328
    [37]
    Guan S Y, Lu Y C, Liu X Z. Evaluation of multiple forest service based on the integration of stand structural attributes in mixed oak forests[J]. Sustainability, 2022, 14(14): 8228. doi: 10.3390/su14148228
    [38]
    Simons N K, Felipe-Lucia M R, Schall P, et al. National forest inventories capture the multifunctionality of managed forests in Germany[J]. Forest Ecosystems, 2021, 8(1): 5. doi: 10.1186/s40663-021-00280-5
    [39]
    Brockerhoff E G, Barbaro L, Castagneyrol B, et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services[J]. Biodiversity and Conservation, 2017, 26: 3005−3035. doi: 10.1007/s10531-017-1453-2
    [40]
    Kowalska A, Affek A, Wolski J, et al. Assessment of regulating ES potential of lowland riparian hardwood forests in Poland[J]. Ecological Indicators, 2021, 120: 106834. doi: 10.1016/j.ecolind.2020.106834
    [41]
    Li S F, Liu W D, Lang X D, et al. Species richness, not abundance, drives ecosystem multifunctionality in a subtropical coniferous forest[J]. Ecological Indicators, 2021, 120: 106911. doi: 10.1016/j.ecolind.2020.106911
    [42]
    Xie H T, Wang G G, Yu M K. Ecosystem multifunctionality is highly related to the shelterbelt structure and plant species diversity in mixed shelterbelts of eastern China[J]. Global Ecology and Conservation, 2018, 27: e00470.
    [43]
    Huang X B, Su J R, Li S F, et al. Functional diversity drives ecosystem multifunctionality in a Pinus yunnanensis natural secondary forest[J]. Scientific Reports, 2019, 9(1): 6979. doi: 10.1038/s41598-019-43475-1
    [44]
    van der Plas F, Ratcliffe S, Ruiz-Benito P, et al. Continental mapping of forest ecosystem functions reveals a high but unrealized potential for forest multifunctionality[J]. Ecology Letters, 2018, 21(1): 31−42. doi: 10.1111/ele.12868
    [45]
    Giguere-Tremblay R, Laperriere G, de Grandpre A, et al. Boreal forest multifunctionality is promoted by low soil organic matter content and high regional bacterial biodiversity in northeastern Canada[J]. Forests, 2020, 11(2): 149. doi: 10.3390/f11020149
    [46]
    Creamer R E, Barel J M, Bongiorno G, et al. The life of soils: Integrating the who and how of multifunctionality[J]. Soil Biology and Biochemistry, 2022, 276: 108561.
    [47]
    Queiroz C, Meacham M, Richter K, et al. Mapping bundles of ecosystem services reveals distinct types of multifunctionality within a Swedish landscape[J]. Ambio, 2015, 44(Suppl.1): S89−101.
    [48]
    Jing X, Prager C M, Classen A T, et al. Variation in the methods leads to variation in the interpretation of biodiversity-ecosystem multifunctionality relationships[J]. Journal of Plant Ecology, 2020, 13(4): 431−441. doi: 10.1093/jpe/rtaa031
    [49]
    Byrnes J E K, Gamfeldt L, Isbell F, et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions[J]. Methods in Ecology and Evolution, 2014, 5(2): 111−124. doi: 10.1111/2041-210X.12143
    [50]
    Byrnes J E K, Roger F, Bagchi R. Understandable multifunctionality measures using hill numbers[J]. Oikos, 2023, 2023(2): e09402. doi: 10.1111/oik.09402
    [51]
    Hölting L, Jacobs S, Felipe-Lucia M R, et al. Measuring ecosystem multifunctionality across scales[J]. Environmental Research Letters, 2019, 14(12): 124083. doi: 10.1088/1748-9326/ab5ccb
    [52]
    Mori A S, Isbell F, Seidl R. β-diversity, community assembly, and ecosystem functioning[J]. Trends in Ecology & Evolution, 2018, 33(7): 549−564.
    [53]
    Chao A, Chiu C H, Hu K H, et al. Hill-Chao numbers allow decomposing gamma multifunctionality into alpha and beta components[J]. Ecology Letters, 2024, 27(1): e14336. doi: 10.1111/ele.14336
    [54]
    Hill M O. Diversity and evenness: a unifying notation and its consequences[J]. Ecology, 1973, 54(2): 427−432. doi: 10.2307/1934352
    [55]
    Chao A, Chiu C H, Jost L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers[J]. Annual Review of Ecology, Evolution, and Systematics, 2014, 45: 297−324. doi: 10.1146/annurev-ecolsys-120213-091540
    [56]
    Chao A, Chiu C H, Villéger S, et al. An attribute-diversity approach to functional diversity, functional beta diversity, and related (dis) similarity measures[J]. Ecological Monographs, 2019, 89(2): e01343. doi: 10.1002/ecm.1343
    [57]
    Chao A, Henderson P A, Chiu C H, et al. Measuring temporal change in alpha diversity: a framework integrating taxonomic, phylogenetic and functional diversity and the iNEXT. 3D standardization[J]. Methods in Ecology and Evolution, 2021, 12(10): 1926−1940. doi: 10.1111/2041-210X.13682
    [58]
    Manning P, Loos J, Barnes A D, et al. Transferring biodiversity-ecosystem function research to the management of ‘real-world’ecosystems[J]. Advances in Ecological Research, 2019, 61: 323−356.
    [59]
    le Provost G, Schenk N V, Penone C, et al. The supply of multiple ecosystem services requires biodiversity across spatial scales[J]. Nature Ecology & Evolution, 2023, 7(2): 236−249.
    [60]
    Neyret M, Peter S, le Provost G, et al. Landscape management strategies for multifunctionality and social equity[J]. Nature Sustainability, 2023, 6(4):391−403.
    [61]
    Buongiorno J, Dahir J S, Lin C, et al. Tree size diversity and economic returns in uneven-aged forest stands[J]. Forest Science, 1994, 40(1): 83−103. doi: 10.1093/forestscience/40.1.83
    [62]
    向玮, 雷相东, 洪玲霞, 等. 落叶松云冷杉林矩阵生长模型及多目标经营模拟[J]. 林业科学, 2011, 47(6): 77−87. doi: 10.11707/j.1001-7488.20110612

    Xiang W, Lei X D, Hong L X, et al. Matrix growth model and harvest scenario simulation for multiple uses of larch-spruce-fir forests[J]. Scientia Silvae Sinicae, 2011, 47(6): 77−87. doi: 10.11707/j.1001-7488.20110612
    [63]
    Biber P, Felton A, Nieuwenhuis M, et al. Forest biodiversity, carbon sequestration, and wood production: modeling synergies and trade-offs for ten forest landscapes across Europe[J]. Frontiers in Ecology and Evolution, 2020, 8: 547696. doi: 10.3389/fevo.2020.547696
    [64]
    Başkent E Z, Kašpar J. Exploring the effects of management intensification on multiple ecosystem services in an ecosystem management context[J]. Forest Ecology and Management, 2022, 518: 120299. doi: 10.1016/j.foreco.2022.120299
    [65]
    Mey R, Zell J, Thurig E, et al. Tree species admixture increases ecosystem service provision in simulated spruce- and beech-dominated stands[J]. European Journal of Forest Research, 2022, 141(5): 801−820. doi: 10.1007/s10342-022-01474-4
    [66]
    Lafond V, Cordonnier T, Mao Z, et al. Trade-offs and synergies between ecosystem services in uneven-aged mountain forests: evidences using Pareto fronts[J]. European Journal of Forest Research, 2017, 136(5−6): 997−1012. doi: 10.1007/s10342-016-1022-3
    [67]
    Zanchi G, Belyazid S, Akselsson C, et al. Modelling the effects of management intensification on multiple forest services: a Swedish case study[J]. Ecological Modelling, 2014, 284: 48−59. doi: 10.1016/j.ecolmodel.2014.04.006
    [68]
    Pukkala T, Lahde E, Laiho O, et al. A multifunctional comparison of even-aged and uneven-aged forest management in a boreal region[J]. Canadian Journal of Forest Research, 2011, 41(4): 851−862. doi: 10.1139/x11-009
    [69]
    Blattert C, Lemm R, Thürig E, et al. Long-term impacts of increased timber harvests on ecosystem services and biodiversity: a scenario study based on national forest inventory data[J]. Ecosystem Services, 2020, 45: 101150. doi: 10.1016/j.ecoser.2020.101150
    [70]
    Morán-Ordóñez A, Ameztegui A, de Cáceres M, et al. Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios[J]. Ecosystem Services, 2020, 45: 101174. doi: 10.1016/j.ecoser.2020.101174
    [71]
    Dong L B, Lu W, Li Z G. Developing alternative forest spatial management plans when carbon and timber values are considered: a real case from northeastern China[J]. Ecological Modelling, 2018, 385: 45−57. doi: 10.1016/j.ecolmodel.2018.07.009
    [72]
    Deng W W, Xiang W H, Ouyang S, et al. Spatially explicit optimization of the forest management tradeoff between timber production and carbon sequestration[J]. Ecological Indicators, 2022, 142: 109193. doi: 10.1016/j.ecolind.2022.109193
    [73]
    董灵波, 孙云霞, 刘兆刚. 基于碳和木材目标的森林空间经营规划研究[J]. 北京林业大学学报, 2017, 39(1): 52−61.

    Dong L B, Sun Y X, Liu Z G. Integrating carbon and timber objective into forest spatial planning management[J]. Journal of Beijing Forestry University, 2017, 39(1): 52−61.
    [74]
    戎建涛, 雷相东, 张会儒, 等. 兼顾碳贮量和木材生产目标的森林经营规划研究[J]. 西北林学院学报, 2012, 27(2): 155−162.

    Rong J T, Lei X D, Zhang H R, et al. Forest management planning incorporating values of timber and carbon[J]. Journal of Northwest Forestry University, 2012, 27(2): 155−162.
    [75]
    Eyvindson K, Duflot R, Triviño M, et al. High boreal forest multifunctionality requires continuous cover forestry as a dominant management[J]. Land Use Policy, 2021, 100: 104918. doi: 10.1016/j.landusepol.2020.104918
    [76]
    Chumachenko S, Kiseleva V, Kolycheva A, et al. Long-term forecast of forest ecosystem services under different forest use scenarios[J]. IOP Conference Series: Earth and Environmental Science, 2021, 875(1): 012039. doi: 10.1088/1755-1315/875/1/012039
    [77]
    Lundholm A, Black K, Corrigan E, et al. Evaluating the impact of future global climate change and bioeconomy scenarios on ecosystem services using a strategic forest management decision support system[J]. Frontiers in Ecology and Evolution, 2020, 8: 200. doi: 10.3389/fevo.2020.00200
    [78]
    Díaz-Yáñez O, Pukkala T, Packalen P, et al. Multifunctional comparison of different management strategies in boreal forests [J]. Forestry, 2019, 93(1): 84−95.
    [79]
    Schwaiger F, Poschenrieder W, Biber P, et al. Ecosystem service trade-offs for adaptive forest management[J]. Ecosystem Services, 2019, 39: 100993. doi: 10.1016/j.ecoser.2019.100993
    [80]
    Temperli C, Bugmann H, Elkin C. Adaptive management for competing forest goods and services under climate change[J]. Ecological Applications, 2012, 22(8): 2065−2077. doi: 10.1890/12-0210.1
    [81]
    Pang X, Nordström E M, Böttcher H, et al. Trade-offs and synergies among ecosystem services under different forest management scenarios: the LEcA tool[J]. Ecosystem Services, 2017, 28: 67−79. doi: 10.1016/j.ecoser.2017.10.006
    [82]
    Irauschek F, Rammer W, Lexer M J. Can current management maintain forest landscape multifunctionality in the eastern Alps in Austria under climate change?[J]. Regional Environmental Change, 2015, 17(1): 33−48.
    [83]
    Langner A, Irauschek F, Perez S, et al. Value-based ecosystem service trade-offs in multi-objective management in European mountain forests[J]. Ecosystem Services, 2017, 26: 245−257. doi: 10.1016/j.ecoser.2017.03.001
    [84]
    Lagergren F, Jönsson A M. Ecosystem model analysis of multi-use forestry in a changing climate[J]. Ecosystem Services, 2017, 26: 209−224. doi: 10.1016/j.ecoser.2017.06.007
    [85]
    Härtl F H, Barka I, Hahn W A, et al. Multifunctionality in European mountain forests: an optimization under changing climatic conditions[J]. Canadian Journal of Forest Research, 2016, 46(2): 163−171.
    [86]
    Mina M, Bugmann H, Cordonnier T, et al. Future ecosystem services from European mountain forests under climate change[J]. Journal of Applied Ecology, 2017, 54(2): 389−401. doi: 10.1111/1365-2664.12772
    [87]
    Caicoya A T, Vergarechea M, Blattert C, et al. What drives forest multifunctionality in central and northern Europe? Exploring the interplay of management, climate, and policies[J]. Ecosystem Services, 2023, 64: 101575. doi: 10.1016/j.ecoser.2023.101575
    [88]
    Márquez L A M, Rezende E C N, Machado K B, et al. Trends in valuation approaches for cultural ecosystem services: a systematic literature review[J]. Ecosystem Services, 2023, 64: 101572. doi: 10.1016/j.ecoser.2023.101572
    [89]
    Siwicka E, Gladstone-Gallagher R, Hewitt J E, et al. Beyond the single index: investigating ecological mechanisms underpinning ecosystem multifunctionality with network analysis[J]. Ecology and Evolution, 2021, 11(18): 12401−12412. doi: 10.1002/ece3.7987
    [90]
    Felipe-Lucia M R. Modelling dynamic ecosystem services[J]. Nature Sustainability, 2021, 4(11): 928−929. doi: 10.1038/s41893-021-00765-9
    [91]
    Başkent E Z, Kašpar J. Exploring the effects of various rotation lengths on the ecosystem services within a multiple-use management framework[J]. Forest Ecology and Management, 2023, 538: 120974. doi: 10.1016/j.foreco.2023.120974
    [92]
    Baskent E Z, Borges J G, Kašpar J, et al. A design for addressing multiple ecosystem services in forest management planning[J]. Forests, 2020, 11(10): 1108. doi: 10.3390/f11101108
    [93]
    França L C J, Júnior F W A, Silva C S J, et al. Forest landscape planning and management: a state-of-the-art review[J]. Trees, Forests and People, 2022, 8: 100275. doi: 10.1016/j.tfp.2022.100275
  • Related Articles

    [1]Xue Yawen, Zhao Dingjie, Sun Mingqi, Yang Qimeng, Liu Baohua, Xu Hang, Zhang Zhiqiang. Characteristics and regeneration potential of soil seed banks in green space of urban parks in Beijing[J]. Journal of Beijing Forestry University, 2023, 45(10): 1-15. DOI: 10.12171/j.1000-1522.20230024
    [2]Shen Ying, Qin Tao, Guo Yinhua, Zhang Huan, Zhou Zhiyong. Short-term effects of forest fire on soil microorganism and enzyme activities of Pinus tabuliformis forest in Taiyue Mountain, Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2022, 44(4): 76-85. DOI: 10.12171/j.1000-1522.20210042
    [3]Sun Yonglei, Lu Zeyang, Zhou Jinxing, Pang Danbo, Liu Yuguo, Guan Yinghui. Soil enzyme activities and physicochemical properties of typical woodlands in karst faulted basins[J]. Journal of Beijing Forestry University, 2020, 42(2): 40-48. DOI: 10.12171/j.1000-1522.20180328
    [4]Jiang Jun, Liu Xianzhao, Jia Hongyan, Ming Angang, Chen Beibei, Lu Yuanchang. Effects of stand density on understory species diversity and soil physicochemical properties after close-to-nature transformation management of Chinese fir plantation[J]. Journal of Beijing Forestry University, 2019, 41(5): 170-177. DOI: 10.13332/j.1000-1522.20190022
    [5]LI Wei-ke, LIU Xiao-dong, NIU Shu-kui, LI Bing-yi, LIU Guan-hong, CHU Yan-qin. Impact of fire on soil microbial biomass of Pinus tabuliformis forest in Pingquan County, Hebei of northern China[J]. Journal of Beijing Forestry University, 2017, 39(10): 70-77. DOI: 10.13332/j.1000-1522.20160420
    [6]BAI Jing, YAN Jin-yu, HE Dong-jin, CAI Jin-biao, WANG Ren, YOU Wei-bin, XIAO Shi-hong, HOU Dong-liang, LI Wei-wei. Effects of Spartina alterniflora invasion in eastern Fujian coastal wetland on the physicochemical properties and enzyme activities of mangrove soil[J]. Journal of Beijing Forestry University, 2017, 39(1): 70-77. DOI: 10.13332/j.1000-1522.20160202
    [7]LI Ping-ping, XUE Bin, SUN De-zhi. Effects of applying sewage sludge compost on the physicochemical properties of soil and growth of Trifolium repens[J]. Journal of Beijing Forestry University, 2013, 35(1): 127-131.
    [8]WEN Yuan-guang, ZHENG Xian, LI Ming-chen, XU Hai-gen, LIANG Hong-wen, HUANG Cheng-biao, ZHU Hong-guang, HE Bin. Effects of eucalypt plantation replacing Masson pine forest on soil physiochemical properties in Guangxi, southern China.[J]. Journal of Beijing Forestry University, 2009, 31(6): 145-148.
    [9]XUE Wen-yue, DAI Wei, WANG Le-le, QI Jun, LI Xiao-hong. Characteristics of soil enzymes and their relationship with physicochemical properties in conife rous forest soils in Beijing mountainous area.[J]. Journal of Beijing Forestry University, 2009, 31(4): 90-96.
    [10]WANG Xu-qin, DAI Wei, XIA Liang-fang, DENG Zong-fu, YU Hai-xia, NIE Li-shui. Effects of different subtropical plantations on physical and chemical properties of soil[J]. Journal of Beijing Forestry University, 2006, 28(6): 56-59.
  • Cited by

    Periodical cited type(11)

    1. 赵钰婷,陈冬瑶,杨柳,李晶楠,宁广亮,姜静. 白桦四倍体×紫雨桦二倍体杂交种子活力及杂种子代生长特性分析. 温带林业研究. 2025(01): 1-8 .
    2. 任亚超,张军,王进茂,杨敏生. 科研反哺教学在林木育种学教学中的探索与实践. 安徽农业科学. 2024(10): 278-282 .
    3. 杨琦,王湘莹,王晓明,乔中全,唐丽. 大花紫薇ב丹红紫叶’紫薇杂交F_1代不育株转录组测序. 东北林业大学学报. 2024(09): 25-29 .
    4. 赵一帆,孔博,程雪桐,李亮,凌傲宇,李智群,康向阳,张平冬. 赤霉素喷洒处理诱导新疆杨2n花粉产生及其对微管骨架的影响. 北京林业大学学报. 2023(01): 40-50 . 本站查看
    5. 李智群,孔博,程雪桐,李亮,张平冬. 高温诱导银灰杨花粉败育的细胞学机理研究. 北京林业大学学报. 2023(05): 25-34 . 本站查看
    6. 刘春洋,彭朝凤,程世平,姚鹏强,耿喜宁,谢丽华. 高温诱导‘凤丹’牡丹2n雌配子创制三倍体. 园艺学报. 2023(07): 1455-1466 .
    7. 刘宣晨,刘彩霞,张世凯,李开隆,曲冠证. 大青杨×小黑杨异源三倍体新种质创制. 东北林业大学学报. 2023(10): 19-27 .
    8. 周炳秀,刘勇,彭玉信,张劲,赵建松,朱轶超,赵巧玲,王硕,陶靖,孟路. 雄性毛白杨无性系苗期表型和生理变异的早期综合评价. 东北林业大学学报. 2023(11): 1-9 .
    9. 吴婷,贾瑞冬,杨树华,赵鑫,于晓南,国圆,葛红. 蝴蝶兰多倍体育种研究进展与展望. 园艺学报. 2022(02): 448-462 .
    10. 张新宇,董阳,王梦蕾,孙照斌. 银腺杨解剖及理化性能研究. 林业科技. 2022(05): 33-36 .
    11. 陈赢男,韦素云,曲冠正,胡建军,王军辉,尹佟明,潘惠新,卢孟柱,康向阳,李来庚,黄敏仁,王明庥. 现代林木育种关键核心技术研究现状与展望. 南京林业大学学报(自然科学版). 2022(06): 1-9 .

    Other cited types(14)

Catalog

    Article views (760) PDF downloads (166) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return