Citation: | Wu Fei, Gao Zhangwei, Zhang Ruibo, Shi Rongxi, Liu Mengjie, Hu Jian, Wang Hui, Zhou Qingping. Effects of warming on soil microbial diversity and functional potential in alpine meadows[J]. Journal of Beijing Forestry University, 2025, 47(1): 29-38. DOI: 10.12171/j.1000-1522.20240064 |
This study aimed to explore the response patterns of soil microbial diversity and their functional potentials to different warming levels in an alpine ecosystem on the Qinghai-Tibet Plateau of western China.
We conducted a field manipulation warming experiment using infrared heating methods to set three warming treatments, including control, low-level warming (+1.5 ℃) and high-level warming (+2.5 ℃). Through soil microbial high-throughput sequencing analysis, we investigated the general patterns and mechanisms underlying soil bacterial and fungi communities in response to field warming.
(1) Low-level warming and high-level warming significantly increased soil temperature in the topsoil by 1.4 and 2.4 ℃, and decreased soil moisture by 11% and 17%, respectively (P < 0.05). In contrast to the control, soil nitrate nitrogen content under low-level warming and high-level warming decreased by 66% and 72% (P < 0.05), respectively, while only high-level warming significantly stimulated soil available phosphorus content by 36% (P < 0.05). (2) Compared with control, warming significantly reduced soil bacterial α diversity and phylogenetic diversity, with notable differences in bacterial community structure (P < 0.05). But soil fungi community did not show any changes in these indicators. (3) In the soil bacterial community, functional categories such as carbohydrate metabolism and global overview map were significantly improved due to warming, while the abundance of three trophic types (i.e. symbiotroph, pathtroph and saprotroph) of soil fungi did not change under warming. (4) Soil bacterial functional potentials were mainly and positively correlated with soil total nitrogen and available phosphorus, while fungal functional potentials were positively associated with fungal Shannon diversity index.
In conclusion, warming significantly reduces soil bacterial α diversity and phylogenetic diversity, alters its β diversity. Warming promotes the expression of functional potentials such as carbohydrate metabolism in the bacterial community by regulating soil available phosphorous. In contrast, warming does not influence soil fungal diversity, community structure, and functional potentials. Our findings highlight the differential temperature sensitivities of soil bacterial and fungal communities, which may affect ecosystem functions differently.
[1] |
Jansson J K, Hofmockel K S. Soil microbiomes and climate change[J]. Nature Reviews Microbiology, 2020, 18(1): 35−46. doi: 10.1038/s41579-019-0265-7
|
[2] |
Bardgett R D, van der Putten W H. Belowground biodiversity and ecosystem functioning[J]. Nature, 2014, 515: 505−511. doi: 10.1038/nature13855
|
[3] |
Hector A, Bagchi R. Biodiversity and ecosystem multifunctionality[J]. Nature, 2007, 448: 188−190. doi: 10.1038/nature05947
|
[4] |
Zhou Z, Wang C, Luo Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality[J]. Nature Communications, 2020, 11(1): 3072. doi: 10.1038/s41467-020-16881-7
|
[5] |
Becker J, Eisenhauer N, Scheu S, et al. Increasing antagonistic interactions cause bacterial communities to collapse at high diversity[J]. Ecology Letters, 2012, 15(5): 468−474. doi: 10.1111/j.1461-0248.2012.01759.x
|
[6] |
Nielsen U N, Ayres E, Wall D H, et al. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships[J]. European Journal of Soil Science, 2011, 62(1): 105−116. doi: 10.1111/j.1365-2389.2010.01314.x
|
[7] |
Cadotte M W, Jonathan D T, Regetz J, et al. Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history[J]. Ecology Letters, 2010, 13(1): 96−105. doi: 10.1111/j.1461-0248.2009.01405.x
|
[8] |
Wiens J J, Graham C H. Niche conservatism: integrating evolution, ecology, and conservation biology[J]. Annual Review of Ecology, Evolution, and Systematics, 2005, 36(1): 519−539. doi: 10.1146/annurev.ecolsys.36.102803.095431
|
[9] |
Goberna M, Verdú M. Phylogenetic-scale disparities in the soil microbial diversity-ecosystem functioning relationship[J]. The ISME Journal, 2018, 12(9): 2152−2162. doi: 10.1038/s41396-018-0162-5
|
[10] |
Lee H, Romero J. Climate change 2023: synthesis report[R]// Contribution of working groups Ⅰ, Ⅱ and Ⅲ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC, 2023: 35−115.
|
[11] |
Barnard S, van Goethem M W, de Scally S Z, et al. Increased temperatures alter viable microbial biomass, ammonia oxidizing bacteria and extracellular enzymatic activities in Antarctic soils[J]. FEMS Microbiology Ecology, 2020, 96(5): fiaa065. doi: 10.1093/femsec/fiaa065
|
[12] |
Pold G, Billings A F, Blanchard J L, et al. Long-term warming alters carbohydrate degradation potential in temperate forest soils[J]. Applied and Environmental Microbiology, 2016, 82(22): 6518–6530.
|
[13] |
Pietikäinen, Pettersson M, Bååth E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates[J]. FEMS Microbiology Ecology, 2005, 52(1): 49−58. doi: 10.1016/j.femsec.2004.10.002
|
[14] |
Huang W, Hall S J. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter[J]. Nature Communications, 2017, 8(1): 1774. doi: 10.1038/s41467-017-01998-z
|
[15] |
Robinson D A, Campbell C S, Hopmans J W, et al. Soil moisture measurement for ecological and hydrological watershed-scale observatories: a review[J]. Vadose Zone Journal, 2008, 7(1): 358−389. doi: 10.2136/vzj2007.0143
|
[16] |
Manzoni S, Schimel J P, Porporato A. Responses of soil microbial communities to water stress: results from a meta-analysis[J]. Ecology, 2012, 93(4): 930−938. doi: 10.1890/11-0026.1
|
[17] |
Rousk J, Bååth E, Brookes P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The ISME Journal, 2010, 4(10): 1340−1351. doi: 10.1038/ismej.2010.58
|
[18] |
Waldrop M P, Holloway J M, Smith D B, et al. The interacting roles of climate, soils, and plant production on soil microbial communities at a continental scale[J]. Ecology, 2017, 98(7): 1957−1967. doi: 10.1002/ecy.1883
|
[19] |
van der Heijden M G A, Bardgett R D, van Straalen N M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters, 2008, 11(3): 296−310. doi: 10.1111/j.1461-0248.2007.01139.x
|
[20] |
Eisenhauer N, Lanoue A, Strecker T, et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass[J]. Scientific Reports, 2017, 7(1): 44641. doi: 10.1038/srep44641
|
[21] |
Wan X, Chen X, Huang Z, et al. Contribution of root traits to variations in soil microbial biomass and community composition[J]. Plant and Soil, 2021, 460(1−2): 483−495.
Wan X, Chen X, Huang Z, et al. Contribution of root traits to variations in soil microbial biomass and community composition[J]. Plant and Soil, 2021, 460(1−2): 483−495.
|
[22] |
陆雅海, 傅声雷, 褚海燕, 等. 全球变化背景下的土壤生物学研究进展[J]. 中国科学基金, 2015, 29(1): 19−24.
Lu Y H, Fu S L, Chu H Y, et al. Recent advances in global change and soil biology[J]. Bulletin of National Science Foundation of China, 2015, 29(1): 19−24.
|
[23] |
Zogg G P, Zak D R, Ringelberg D B, et al. Compositional and functional shifts in microbial communities due to soil warming[J]. Soil Science Society of America Journal, 1997, 61(2): 475−481. doi: 10.2136/sssaj1997.03615995006100020015x
|
[24] |
Chen J, Luo Y, Xia J, et al. Stronger warming effects on microbial abundances in colder regions[J]. Scientific Reports, 2015, 5(1): 18032. doi: 10.1038/srep18032
|
[25] |
de Angelis K M, Pold G, Topçuoğlu B D, et al. Long-term forest soil warming alters microbial communities in temperate forest soils[J]. Frontiers in Microbiology, 2015, 6: 00104.
|
[26] |
Schindlbacher A, Rodler A, Kuffner M, et al. Experimental warming effects on the microbial community of a temperate mountain forest soil[J]. Soil Biology and Biochemistry, 2011, 43(7): 1417−1425. doi: 10.1016/j.soilbio.2011.03.005
|
[27] |
Crowther T W, van den Hoogen J, Wan J, et al. The global soil community and its influence on biogeochemistry[J]. Science, 2019, 365: eaav0550. doi: 10.1126/science.aav0550
|
[28] |
Pärn J, Verhoeven J T A, Butterbach-Bahl K, et al. Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots[J]. Nature Communications, 2018, 9(1): 1135. doi: 10.1038/s41467-018-03540-1
|
[29] |
Hayden H L, Mele P M, Bougoure D S, et al. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil[J]. Environmental Microbiology, 2012, 14(12): 3081−3096. doi: 10.1111/j.1462-2920.2012.02855.x
|
[30] |
Zhang Y, Zhang N, Yin J, et al. Simulated warming enhances the responses of microbial N transformations to reactive N input in a Tibetan alpine meadow[J]. Environment International, 2020, 141: 105795. doi: 10.1016/j.envint.2020.105795
|
[31] |
Domeignoz-Horta L A, Pold G, Liu X J A, et al. Microbial diversity drives carbon use efficiency in a model soil[J]. Nature Communications, 2020, 11(1): 3684. doi: 10.1038/s41467-020-17502-z
|
[32] |
Zhou Y, Sun B, Xie B, et al. Warming reshaped the microbial hierarchical interactions[J]. Global Change Biology, 2021, 27(24): 6331−6347. doi: 10.1111/gcb.15891
|
[33] |
Chen Y, Han M, Yuan X, et al. Warming has a minor effect on surface soil organic carbon in alpine meadow ecosystems on the Qinghai-Tibetan Plateau[J]. Global Change Biology, 2022, 28(4): 1618−1629. doi: 10.1111/gcb.15984
|
[34] |
Shen M, Piao S, Chen X, et al. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau[J]. Global Change Biology, 2016, 22(9): 3057−3066. doi: 10.1111/gcb.13301
|
[35] |
Yu C, Han F, Fu G. Effects of 7 years experimental warming on soil bacterial and fungal community structure in the Northern Tibet alpine meadow at three elevations[J]. Science of The Total Environment, 2019, 655: 814−822. doi: 10.1016/j.scitotenv.2018.11.309
|
[36] |
Xu M, Li X, Kuyper T W, et al. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau[J]. Global Change Biology, 2021, 27(10): 2061−2075. doi: 10.1111/gcb.15553
|
[37] |
Wei X, Shi Y, Qin F, et al. Effects of experimental warming, precipitation increase and their interaction on AM fungal community in an alpine grassland of the Qinghai-Tibetan Plateau[J]. European Journal of Soil Biology, 2021, 102: 103272. doi: 10.1016/j.ejsobi.2020.103272
|
[38] |
Jiao S, Chen W, Wang J, et al. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems[J]. Microbiome, 2018, 6(1): 146. doi: 10.1186/s40168-018-0526-0
|
[39] |
Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996−998. doi: 10.1038/nmeth.2604
|
[40] |
Wemheuer F, Taylor J A, Daniel R, et al. Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences[J]. Environmental Microbiome, 2020, 15(1): 11. doi: 10.1186/s40793-020-00358-7
|
[41] |
Nguyen N H, Song Z, Bates S T, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecology, 2016, 20: 241−248. doi: 10.1016/j.funeco.2015.06.006
|
[42] |
McMurdie P J, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data[J]. PLoS One, 2013, 8(4): e61217. doi: 10.1371/journal.pone.0061217
|
[43] |
Dixon P. VEGAN, a package of R functions for community ecology[J]. Journal of Vegetation Science, 2003, 14(6): 927−930. doi: 10.1111/j.1654-1103.2003.tb02228.x
|
[44] |
Zeng Z, Piao S, Li L Z X, et al. Climate mitigation from vegetation biophysical feedbacks during the past three decades[J]. Nature Climate Change, 2017, 7(6): 432−436. doi: 10.1038/nclimate3299
|
[45] |
Pisani O, Frey S D, Simpson A J, et al. Soil warming and nitrogen deposition alter soil organic matter composition at the molecular-level[J]. Biogeochemistry, 2015, 123(3): 391−409. doi: 10.1007/s10533-015-0073-8
|
[46] |
Ganjurjav H, Gao Q, Zhang W, et al. Effects of warming on CO2 fluxes in an alpine meadow ecosystem on the central Qinghai-Tibetan Plateau[J]. PLoS One, 2015, 10(7): e0132044. doi: 10.1371/journal.pone.0132044
|
[47] |
Tong Y, Long Y, Yang Z. Effects of warming and isolation from precipitation on the soil carbon, nitrogen, and phosphorus, and their stoichiometries in an alpine meadow in the Qinghai-Tibet Plateau: a greenhouse warming study[J]. Frontiers in Ecology and Evolution, 2023, 11: 1149240. doi: 10.3389/fevo.2023.1149240
|
[48] |
Rui Y, Wang Y, Chen C, et al. Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China[J]. Plant and Soil, 2012, 357: 73−87. doi: 10.1007/s11104-012-1132-8
|
[49] |
Schmidt I K, Tietema A, Williams D, et al. Soil solution chemistry and element fluxes in three European heathlands and their responses to warming and drought[J]. Ecosystems, 2004, 7(6).
|
[50] |
Ma F F, Yan Y, Svenning J C, et al. Opposing effects of warming on the stability of above- and belowground productivity in facing an extreme drought event[J]. Ecology, 2024, 105(1): e4193. doi: 10.1002/ecy.4193
|
[51] |
Zhang Y, Zhang N, Yin J, et al. Combination of warming and N inputs increases the temperature sensitivity of soil N2O emission in a Tibetan alpine meadow[J]. Science of the Total Environment, 2020, 704: 135450. doi: 10.1016/j.scitotenv.2019.135450
|
[52] |
Yan Y, Wang J, Tian D, et al. Heterotrophic respiration and its proportion to total soil respiration decrease with warming but increase with clipping[J]. Catena, 2022, 215: 106321. doi: 10.1016/j.catena.2022.106321
|
[53] |
Bai X, Huang Y, Ren W, et al. Responses of soil carbon sequestration to climate-smart agriculture practices: a meta-analysis[J]. Global Change Biology, 2019, 25(8): 2591−2606. doi: 10.1111/gcb.14658
|
[54] |
Zhou J, Li X, Peng F, et al. Mobilization of soil phosphate after 8 years of warming is linked to plant phosphorus-acquisition strategies in an alpine meadow on the Qinghai-Tibetan Plateau[J]. Global Change Biology, 2021, 27(24): 6578−6591. doi: 10.1111/gcb.15914
|
[55] |
Zhao J, Xie X, Jiang Y, et al. Effects of simulated warming on soil microbial community diversity and composition across diverse ecosystems[J]. Science of the Total Environment, 2024, 911: 168793. doi: 10.1016/j.scitotenv.2023.168793
|
[56] |
Castro H F, Classen A T, Austin E E, et al. Soil microbial community responses to multiple experimental climate change drivers[J]. Applied and Environmental Microbiology, 2010, 76(4): 999−1007. doi: 10.1128/AEM.02874-09
|
[57] |
Allison S D, Martiny J B H. Resistance, resilience, and redundancy in microbial communities[J]. Proceedings of the National Academy of Sciences, 2008, 105: 11512−11519. doi: 10.1073/pnas.0801925105
|
[58] |
Wu J, Xiong J, Hu C, et al. Temperature sensitivity of soil bacterial community along contrasting warming gradient[J]. Applied Soil Ecology, 2015, 94: 40−48. doi: 10.1016/j.apsoil.2015.04.018
|
[59] |
Sui X, Zhang R, Frey B, et al. Land use change effects on diversity of soil bacterial, Acidobacterial and fungal communities in wetlands of the Sanjiang Plain, northeastern China[J]. Scientific Reports, 2019, 9(1): 18535. doi: 10.1038/s41598-019-55063-4
|
[60] |
Johnson R J, Stenvinkel P, Andrews P, et al. Fructose metabolism as a common evolutionary pathway of survival associated with climate change, food shortage and droughts[J]. Journal of Internal Medicine, 2020, 287(3): 252−262. doi: 10.1111/joim.12993
|
[61] |
Wan P, Zhang F, Zhang K, et al. Soil warming decreases carbon availability and reduces metabolic functions of bacteria[J]. Catena, 2023, 223: 106913. doi: 10.1016/j.catena.2023.106913
|
[62] |
Cai P, Sun X, Wu Y, et al. Soil biofilms: microbial interactions, challenges, and advanced techniques for ex-situ characterization[J]. Soil Ecology Letters, 2019, 1(3−4): 85−93. doi: 10.1007/s42832-019-0017-7
|
[63] |
Schimel J, Schaeffer S M. Microbial control over carbon cycling in soil[J]. Frontiers in Microbiology, 2012, 3: 348.
|
[64] |
Zheng M M, Wang C, Li W X, et al. Soil nutrients drive function and composition of phoC-harboring bacterial community in acidic soils of southern China[J]. Frontiers in Microbiology, 2019, 10: 2654. doi: 10.3389/fmicb.2019.02654
|
[65] |
Sandhya V, Ali Sk Z. The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation[J]. Microbiology, 2015, 84(4): 512−519. doi: 10.1134/S0026261715040153
|
[66] |
Wingender J, Neu T R, Flemming H C. Microbial extracellular polymeric substances[M]. Berlin: Springer Berlin Heidelberg, 1999.
|
[67] |
Lehmann A, Zheng W, Rillig M C. Soil biota contributions to soil aggregation[J]. Nature Ecology & Evolution, 2017, 1(12): 1828−1835.
|
[68] |
Flemming H C, Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9): 623−633. doi: 10.1038/nrmicro2415
|
[69] |
Saha I, Datta S, Biswas D. Exploring the role of bacterial extracellular polymeric substances for sustainable development in agriculture[J]. Current Microbiology, 2020, 77(11): 3224−3239. doi: 10.1007/s00284-020-02169-y
|
[70] |
Burns R G, de Forest J L, Marxsen J, et al. Soil enzymes in a changing environment: current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58: 216−234. doi: 10.1016/j.soilbio.2012.11.009
|
[71] |
Schimel J P, Bennett J. Nitrogen mineralization: challenges of a changing paradigm[J]. Ecology, 2004, 85(3): 591−602. doi: 10.1890/03-8002
|
[72] |
Li D, Meng M, Ren B, et al. Different responses of soil fungal and bacterial communities to nitrogen addition in a forest grassland ecotone[J]. Frontiers in Microbiology, 2023, 14: 1211768. doi: 10.3389/fmicb.2023.1211768
|