• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Feifei, Zhu Yan, Han Changzhi. Analysis of chloroplast genome codon preference in Camellia meiocarpa and Camellia vietnamensis[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240200
Citation: Zhang Feifei, Zhu Yan, Han Changzhi. Analysis of chloroplast genome codon preference in Camellia meiocarpa and Camellia vietnamensis[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240200

Analysis of chloroplast genome codon preference in Camellia meiocarpa and Camellia vietnamensis

More Information
  • Received Date: June 18, 2024
  • Revised Date: September 08, 2024
  • Accepted Date: March 18, 2025
  • Available Online: March 27, 2025
  • Objective 

    This paper investigates the codon usage patterns in chloroplast genomes of Camellia oleifera and C. vietnamensis, analyzes and elucidates the underlying causes of codon usage bias, identifies optimal codons in their chloroplast genomes, so as to provide theoretical foundations and data support for genomic research and breeding of oil tea species.

    Method 

    Screened CDS sequences (52 sequences each from C. oleifera and C. vietnamensis) were analyzed using Codon W 1.4.2, CUSP, MEGA, and other online tools. Parameters including relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI), and GC content were calculated. Correlation analysis, neutrality plot analysis, ENC-plot analysis, and PR2-plot bias analysis were performed. High-frequency and highly expressed optimal codons were predicted based on RSCU and ΔRSCU values.

    Result 

    (1) C. oleifera exhibited GC content, ENC, and CAI values of 37.49%, 48.561, and 0.158, respectively, while C. vietnamensis showed values of 37.50%, 48.529, and 0.160. Both species displayed uneven GC distribution across codon positions, with GC1 > GC2 > GC3(C. oleifera: GC1 = 45.81%, GC2 = 38.00%, GC3 = 28.64%; C. vietnamensis: GC1 = 45.88%, GC2 = 38.02%, GC3 = 28.59%), indicating a preference for GC at the first codon position. (2) C. oleifera and C. vietnamensis had 23 and 11 optimal codons, respectively, with 22 and 11 of these codons ending in A/U, suggesting a strong preference for A/U at the third codon position.(3) ENC values for both species ranged from 35.64 to 61.00, with minimal differences in mean values, reflecting similarities in codon usage patterns. (4) Neutrality plot, ENC-plot, and PR2-plot analyses revealed that natural selection predominantly influenced codon usage bias in the chloroplast genomes of both species.

    Conclusion 

    The chloroplast genomes of C. oleifera and C. vietnamensis exhibit weak codon usage bias, primarily shaped by natural selection. C. oleifera has 23 optimal codons, while C. vietnamensis has 11 optimal codons. These findings provide critical theoretical and empirical insights for advancing oil tea genomic studies and breeding programs.

  • [1]
    张文达, 赵逸伦, 王湘雨, 等. 再力花叶绿体基因组特征和系统发育分析[J]. 分子植物育种, 2024, 22(3): 1−14.

    Zhang W D, Zhao Y L, Wang X Y, et al. The characteristics of chloroplast genome and phylogenic analysis of Thalia dealbata Fraser [J]. Molecular Plant Breeding, 2024, 22(3): 1−14.
    [2]
    段春燕, 王晓凌. 重瓣榆叶梅全叶绿体基因组遗传特征分析[J]. 浙江农林大学学报, 2024, 41(3): 577−585.

    Duan C Y, Wang X L. Genetic characteristics of whole chloroplast genome in Prunus triloba ‘Multiplex’[J]. Journal of Zhejiang A& F University, 2024, 41(3): 577−585.
    [3]
    张晶晶, 袁庆, 魏瑶, 等. 忍冬属囊管组植物叶绿体基因组进化分析[J]. 中草药, 2024, 55(9): 3085−3097.

    Zhang J J, Yuan Q, Wei Y, et al. Evolutionary analysis of chloroplast genomes of Sect. Isika (Lonicera) species[J]. Chinese Traditional and Herbal Drugs, 2024, 55(9): 3085−3097.
    [4]
    房振西, 季倩, 胡佳栋, 等. 白鼠尾草叶绿体基因组序列特征与系统进化分析[J]. 药学学报, 2024, 59(5): 1484−1493.

    Fang Z X, Ji Q, Hu J D, et al. Characterization and phylogenetic analysis of the complete chloroplast genome of Salvia apiana Jepson[J]. Acta Pharmaceutica Sinica, 2024, 59(5): 1484−1493.
    [5]
    季凯凯, 宋希强, 陈春国, 等. 木兰科叶绿体基因组的密码子使用特征分析[J]. 中国农业科技导报, 2020, 22(11): 52−62.

    Ji K K, Song X Q, Chen C G, et al. Codon usage profiling of chloroplast genome in Magnoliaceae[J]. Journal of Agricultural Science and Technology, 2020, 22(11): 52−62.
    [6]
    王杰敏, 马东来, 韩晓伟, 等. 24份忍冬属材料叶绿体基因组密码子使用偏好性分析[J]. 植物资源与环境学报, 2023, 32(3): 12−23.

    Wang J M, Ma D L, Han X W, et al. Analysis on codon usage bias of chloroplast genomes 24 Lonicera materials[J]. Journal of Plant Resources and Environment, 2023, 32(3): 12−23.
    [7]
    曹克璠, 李本末, 刘嘉伟, 等. 车轴草属叶绿体基因组密码子特征和系统发育分析[J]. 分子植物育种, 2024, 22(4): 1−14.

    Cao K F, Li B M, Liu J W, et al. Characterization and phylogenetic analysis of the chloroplast genome codons of the genus Trifolium[J]. Molecular Plant Breeding , 2024, 22(4): 1−14.
    [8]
    刘文丽, 王智勇, 田春育, 等. 赖草属叶绿体基因组密码子偏好性分析[J]. 中国草地学报, 2024, 46(2): 14−23.

    Liu W L, Wang Z Y, Tian C Y, et al. Codon bias analysis in chloroplast genomes of Leymus species[J]. Chinese Journal of Grassland, 2024, 46(2): 14−23.
    [9]
    魏亚楠, 龚明贵, 白娜, 等. 梁山慈竹叶绿体基因组密码子偏好性分析[J]. 浙江农林大学学报, 2024, 41(4): 696−705.

    Wei Y N, Gong M G, Bai N, et al. Analysis of codon preference in chloroplast genome of Dendrocalamus farinosus[J]. Journal of Zhejiang A & F University, 2024, 41(4): 696−705.
    [10]
    早浩龙, 李奇, 黄珍华, 等. 人参和三七叶绿体基因组密码子偏好性比较分析[J]. 分子植物育种, 2024.22(5): 1−17.

    Zao H L, Li Q, Huang Z H, et al. Comparative analysis of codon usage bias in chloroplast genome between Panax ginseng and Panax notoginseng[J]. Molecular Plant Breeding, 2024.22(5): 1−17.
    [11]
    王鹏良, 杨利平, 吴红英, 等. 普通油茶叶绿体基因组密码子偏好性分析[J]. 广西植物, 2018, 38(2): 135−144.

    Wang P L, Yang L P, Wu H Y, et al. Condon preference of chloroplast genome in Camellia oleifera[J]. Guihaia, 2018, 38(2): 135−144.
    [12]
    郝丙青, 夏莹莹, 叶航, 等. 香花油茶叶绿体基因组密码子偏好性分析[J]. 中南林业科技大学学报, 2022, 42(9): 178−186.

    Hao B Q, Xia Y Y, Ye H, et al. Analysis on codon usage bias of the chloroplast genome of Camellia osmantha[J]. Journal of Central South University of Forestry & Technology, 2022, 42(9): 178−186.
    [13]
    司春灿, 林英, 尚天玉. 油茶根际促生菌的筛选与促生特性[J]. 中南林业科技大学学报, 2024, 44(4): 28−35.

    Si C C, Lin Y, Shang T Y. Isolation and promoting characteristics of the rhizospheric bacteria of Camellia oleifera Abel[J]. Journal of Central South University of Forestry & Technology, 2024, 44(4): 28−35.
    [14]
    林水富. 福建省生物柴油原料树种及其可持续开发探讨[J]. 亚热带农业研究, 2012, 8(4): 279−283.

    Lin S F. On the biodiesel feedstock trees and their sustainable development in Fujian Province[J]. Subtropical Agricultural Research, 2012, 8(4): 279−283.
    [15]
    邓海艳, 陶丽萍. 油茶产业与乡村振兴的耦合研究: 以湖南邵阳县为例[J]. 武汉轻工大学学报, 2023, 42(6): 27−36.

    Deng H Y, Tao L P. Study on the coupling oil-tea industry and rural revitalization: taking in Shaoyang County, Hunan Province as an example[J]. Journal of Wuhan Polytechnic University, 2023, 42(6): 27−36.
    [16]
    李振东, 陈向东, 吴涛, 等. 黎平县小果油茶良种栽培技术[J]. 绿色科技, 2021, 23(3): 103−104,114.

    Li Z D, Chen X D, Wu T, et al. Cultivation techniques for fine varieties of Camellia meiocarpa in Liping County[J]. Journal of Green Science and Technology, 2021, 23(3): 103−104,114.
    [17]
    Liang H, Qi H, Wang Y, et al. Comparative chloroplast genome analysis of Camellia oleifera and C. meiocarpa: phylogenetic relationships, sequence variation and polymorphism markers[J]. Tropical Plants, 2024, 3(1): 1−12.
    [18]
    Lyu T, Wang Y, Hu Z, et al. The complete chloroplast genome of Camellia vietnamensis, an economic shrub producing edible seed oil[J]. Mitochondrial DNA Part B, 2019, 4(2): 3736−3737. doi: 10.1080/23802359.2019.1681305
    [19]
    肖明昆, 聂恺宏, 沈绍斌, 等. 复羽叶栾树叶绿体基因组密码子偏好性分析[J]. 西南林业大学学报(自然科学), 2023, 43(3): 56−63.

    Xiao M K, Nie K H, Shen S B, et al. Analysis of codon usage bias in the chloroplast genome of Koelreuteria bipinnata[J]. Journal of Southwest Forestry University (Natural Science), 2023, 43(3): 56−63.
    [20]
    辛雅萱, 黎若竹, 李鑫, 等. 杧果叶绿体基因组密码子使用偏好性分析[J]. 中南林业科技大学学报, 2021, 41(9): 148−156,165.

    Xin Y X, Li R Z, Li X, et al. Analysis on codon usage bias of chloroplast genome in Mangifera indica[J]. Journal of Central South University of Forestry & Technology, 2021, 41(9): 148−156,165.
    [21]
    Novembre J A. Accounting for background nucleotide composition when measuring codon usage bias[J]. Molecular Biology and Evolution, 2002, 19(8): 1390−1394. doi: 10.1093/oxfordjournals.molbev.a004201
    [22]
    Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194−1202.
    [23]
    Sueoka N. Directional mutation pressure and neutral molecular evolution[J]. Proceedings of the National Academy of Sciences, 1988, 85(8): 2653−2657. doi: 10.1073/pnas.85.8.2653
    [24]
    梁皓辉, 符虹宇, 黎钊坪, 等. 小球藻叶绿体基因组密码子偏好性分析[J]. 分子植物育种, 2020, 18(17): 5665−5673.

    Liang H H, Fu H Y, Li Z P, et al. Analysis on codon usage bias of chloroplast genome from Chlorella[J]. Molecular Plant Breeding, 2020, 18(17): 5665−5673.
    [25]
    刘慧, 王梦醒, 岳文杰, 等. 糜子叶绿体基因组密码子使用偏性的分析[J]. 植物科学学报, 2017, 35(3): 362−371.

    Liu H, Wang M X, Yue W J, et al. Analysis of codon usage in the chloroplast genome of Broomcorn millet (Panicum miliaceum L.)[J]. Plant Science Journal, 2017, 35(3): 362−371.
    [26]
    Wright F. The effective number of codons' used in a gene[J]. Gene, 1990, 87(1): 23−29. doi: 10.1016/0378-1119(90)90491-9
    [27]
    Sueoka N. Near homogeneity of PR2-bias fingerprints in the human genome and their implications in phylogenetic analyses[J]. Journal of Molecular Evolution, 2001, 53(4−5): 469−476. doi: 10.1007/s002390010237
    [28]
    Xing Y, Xue N L, Xue P C. Analysis of codon usage pattern in Taenia saginata based on a transcriptome dataset[J]. Parasites & Vectors, 2014, 7(1): 527.
    [29]
    张妙霞, 赖钟雄, 赵巧阳. 野生香蕉叶片总RNA提取方法研究[J]. 中国农学通报, 2009, 25(14): 51−54.

    Zhang M X, Lai Z X, Zhao Q Y. The method of total RNA isolation from the wild banana leaves[J]. Chinese Agricultural Science Bulletin, 2009, 25(14): 51−54.
    [30]
    杜梦雪, 张鑫, 高洁, 等. 紫叶苔(Pleurozia purpurea)线粒体基因组密码子偏好性分析[J]. 河北科技大学学报, 2025, 46(1): 91−99.

    Du M X, Zhang X, Gao J, et al. Analysis of codon usage bias in the mitochondrial genome of Pleurozia purpurea[J]. Journal of Hebei University of Science and Technology, 2025, 46(1): 91−99.
    [31]
    朱艳, 韩长志. 普通核桃与深纹核桃中叶绿体基因组密码子使用特征对比[J]. 江苏农业学报, 2024, 40 (8): 1507−1520.

    Zhu Y , Han C Z. Comparative of codon usage characteristics of chloroplast genome in Juglans regia and Juglans sigillate[J]. Jiangsu Agricultural Journal, 2024, 40 (8): 1507−1520.
    [32]
    Kwak S Y, Lew T T S, Sweeney C J, et al. Chloroplast selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers[J]. Nature Nanotechology, 2019, 14(5): 447−455. doi: 10.1038/s41565-019-0375-4
    [33]
    李启少, 王正德, 李建运, 等. 棕红悬钩子叶绿体的基因组结构与序列特征分析[J]. 西南林业大学学报(自然科学), 2024, 44(4): 93−105.

    Li Q S, Wang Z D, Li J Y, et al. Choroplast genome characteristics and comparative analysis of Rubus rufus[J]. Journal of Southwest Forestry University (Natural Science), 2024, 44(4): 93−105.
    [34]
    高灿, 樊智丰, 马长乐. 黄药大头茶叶绿体基因组密码子偏好性分析[J]. 西南林业大学学报(自然科学), 2023, 43(5): 66-76.

    Gao C, Fan Z F, Ma C L. Analysis of uodon usage bias in chloroplast genome of Polyspora chrysandra[J]. Journal of Southwest Forestry University (Natural Science), 2024, 43(5): 66-76.
    [35]
    余涛, 蒲芬, 管芹, 等. 南欧大戟叶绿体基因组密码子偏好性分析[J]. 江苏农业科学, 2023, 51(15): 35−41.

    Yu T, Pu F, Guan Q, et al. Codon preference analysis of chloroplast genome of Euphorbia peplus[J]. Jiangsu Agricultural Sciences, 2023, 51(15): 35−41.
    [36]
    吴宪明, 吴松锋, 任大明, 等. 密码子偏性的分析方法及相关研究进展[J]. 遗传, 2007(4): 420−426.

    Wu X M, Wu S F, Ren D M, et al. The analysis method and progress in the study of codon bias[J]. Hereditas (Beijing), 2007(4): 420−426.
    [37]
    Yue J, Fei D, Hualin W, et al. An extensive analysis on the global codon usage pattern of baculoviruses[J]. Archives of Virology, 2008, 153(12): 2273−2282. doi: 10.1007/s00705-008-0260-1
    [38]
    杜雨, 李效雄, 贾西贝, 等. 枸杞叶绿体基因组密码子偏好性分析[J]. 中草药, 2024, 55(4): 1316−1325.

    Du Y, Li X X, Jia X B, et al. Codon preference analysis of chloroplast genome of Chinese wolfberry[J]. Chinese Traditional and Herbal Drugs, 2024, 55(4): 1316−1325.
    [39]
    李俊霖, 郭淑红, 张强, 等. 蒙古黄芪叶绿体全基因组特征解析及亲缘性分析[J]. 中草药, 2024, 55(7): 2366−2374.

    Li J L, Guo S H, Zhang Q, et al. Characteristics and phylogenetic analysis of Astragalus membranaceus var. mongholicus chloroplast whole genome[J]. Chinese Traditional and Herbal Drugs, 2024, 55(7): 2366−2374.
    [40]
    罗瑶, 胡本祥, 张晗, 等. 卵叶远志叶绿体基因组序列特征与系统发育分析[J]. 中草药, 2023, 54(18): 6065−6073.

    Luo Y, Hu B X, Zhang H, et al. Chloroplast genome sequence characteristics and phylogenetic analysis of Polygala sibirica[J]. Chinese Traditional and Herbal Drugs, 2023, 54(18): 6065−6073.
    [41]
    赵靖侨, 王杰敏, 石卫红, 等. 北沙参叶绿体基因组密码子偏好性分析[J]. 分子植物育种, 2024, 22(3): 1−20.

    Zhao J Q, Wang J M, Shi W H, et al. Analysis on codon usage bias of chloroplast genome in Glehnia littoralis[J]. Molecular Plant Breeding, 2024, 22(3): 1−20.
    [42]
    杜明川, 王伟, 鲍海娟, 等. 葫芦巴叶绿体基因组密码子偏好性分析[J]. 草地学报, 2024, 32(2): 409−418.

    Du M C, Wang W, Bao H J, et al. Analysis of codon bias in chloroplast genome of Trigonella foenum-graecum[J]. Acta Agrestia Sinica, 2024, 32(2): 409−418.
    [43]
    洪森荣, 林顺来, 李盈萍, 等. 甜高粱叶绿体基因组特征及密码子偏好性分析[J]. 草地学报, 2023, 31(12): 3636−3650.

    Hong S R, Lin S L, Li Y P, et al. Analysis of the complete chloroplast genome sequence characteristics and its code usage bias of Sorghum bicolor[J]. Acta Agrestia Sinica, 2023, 31(12): 3636−3650.
  • Related Articles

    [1]Gao Shumin, Yang Muhan, Zhu Yuanyuan, Zhou Yan. Role of CMLs in regulating the competition of plant pollen pollination[J]. Journal of Beijing Forestry University, 2019, 41(3): 143-150. DOI: 10.13332/j.1000-1522.20180375
    [2]PENG Xiang-yong, LIU Jun-xiang, LI Zhen-jian, CHENG Yun-he, SUN Zhen-yuan. Characteristics of pollen germination and pollen tube growth in Salix viminalis in vitro[J]. Journal of Beijing Forestry University, 2017, 39(3): 81-86. DOI: 10.13332/j.1000-1522.20160162
    [3]LIU Jian-xin, YU Xiao-nan.. Ultrastructural investigations of Paeonia pollen activation and pollen tube growth after intersectional hybridization.[J]. Journal of Beijing Forestry University, 2016, 38(9): 80-86. DOI: 10.13332/j.1000-1522.20150439
    [4]XU Lin, CHEN Fa-zhi, JI Xiao-mei, TONG Jun, YANG Shou-kun, CHEN Wei-dong, XIE Yan-feng. Pollen vitality and stigma receptivity in two species of Callicarpa[J]. Journal of Beijing Forestry University, 2012, 34(4): 26-30.
    [5]CAO Yuan, KANG Xiang-yang, ZHANG Zhi-yi, JING Yan-ping. Anomalous changes in Ca2+ATPase distribution during the process of pollen abortion in Populus tomentosa Carr.[J]. Journal of Beijing Forestry University, 2012, 34(4): 10-17.
    [6]LIU Jian-feng, YAN Kun, CHENG Yun-qing, WANG Zhan-wu, ZOU Zhen-feng. Pollen viability, stigma receptivity and fruiting characteristics of hazelnut[J]. Journal of Beijing Forestry University, 2012, 34(3): 58-63.
    [7]OUYANG Ying, LI Bing-ling, LIU Yan. Preservation of Dendrobium densiflorum pollen.[J]. Journal of Beijing Forestry University, 2010, 32(6): 151-154.
    [8]LI Bing-ling, WANG He, LIU Yan. Pollen cryopreservation of Japanese tree peony cultivars[J]. Journal of Beijing Forestry University, 2010, 32(4): 297-300.
    [9]TIAN Cui-ting, LÜ Hong-fei, WANG Feng, ZHANG Chun-yu, LIN Jin-xing. Effects of medium components on in vitro pollen germination and pollen tube growth of Picea wilsonii Mast.[J]. Journal of Beijing Forestry University, 2007, 29(1): 47-52. DOI: 10.13332/j.1000-1522.2007.01.009
    [10]ZHANG Ya-li, SHANG Xiao-qian, LIU Yan. Advances in research of pollen cryopreservation[J]. Journal of Beijing Forestry University, 2006, 28(4): 139-147.
  • Cited by

    Periodical cited type(11)

    1. 马坤,龚静,苗辰,袁瑗. 旱金莲自交亲和性初步研究. 上海农业学报. 2023(03): 17-21 .
    2. 蔡昭艳,苏伟强,董龙,邱文武,施平丽,刘业强,黄辉晔,黄章保,任惠,王小媚. 钙、镁、钾浓度及光照、温度对西番莲花粉离体萌发的影响. 果树学报. 2022(01): 86-94 .
    3. 李秀宇,董黎,孙宇涵,李健康,刘晓迪,谭红岩,Saleem Uddin,李云. 二倍体与四倍体刺槐组培苗形态和生理性状比较. 核农学报. 2021(03): 605-612 .
    4. 卢梦琪,周俊琴,刘懿瑶,杨进,谭晓风. 外源钙离子对NaCl胁迫下油茶花粉萌发的影响. 中南林业科技大学学报. 2021(06): 91-98 .
    5. 罗长维,陈友,刘云. 凤丹花粉活力与柱头可授性及其繁殖特征研究. 河南农业科学. 2019(07): 48-53 .
    6. 李秀宇,郭琪,董黎,孙宇涵,牛东升,刘佳平,王红生,李云. 山西省吉县刺槐无性系种质遗传多样性的EST-SSR分析. 北京林业大学学报. 2019(07): 39-48 . 本站查看
    7. 聂梅,张红,冯雁梦,牛颜冰,吕晋慧. 授粉方法对克服菊科近缘属杂交受精前障碍的影响. 甘肃农业大学学报. 2019(04): 75-82 .
    8. 吉乃喆,冯慧,李纳新,赵惠恩,赵世伟. 三倍体古老月季在月季育种中的应用及其子代倍性分析. 分子植物育种. 2019(19): 6424-6433 .
    9. 陈龙涛,樊明寿,王迎男,杨博文,张会弟,耿婉婷. 喷施不同浓度钙试剂对花后榛子果实生长及结实率的影响. 东北林业大学学报. 2018(06): 33-37 .
    10. 陈素红,邹璞,廖景平. 蓝猪耳花粉管在雌蕊生长途径中钙的分布特征. 生物学杂志. 2018(04): 39-43 .
    11. 杜兵帅,胡海文,曹庆芹,秦岭,房克凤. 钙离子对青杄花粉萌发和花粉管生长的影响. 电子显微学报. 2018(06): 627-636 .

    Other cited types(8)

Catalog

    Article views (28) PDF downloads (5) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return