Citation: | Hao Minhui, Dai Ying, Yue Qingmin, Fan Chunyu, Zhang Chunyu. Relationship between functional diversity of broadleaved Korean pine forest and forest carbon sink function[J]. Journal of Beijing Forestry University, 2022, 44(10): 68-76. DOI: 10.12171/j.1000-1522.20220237 |
[1] |
吴征镒. 中国植被[M]. 北京: 科学出版社, 1980.
Wu Z Y. Vegetation of China[M]. Beijing: Science Press, 1980.
|
[2] |
Peng C, Zhou X, Zhao S, et al. Quantifying the response of forest carbon balance to future climate change in Northeastern China: model validation and prediction[J]. Global and Planetary Change, 2009, 66(3): 179−194.
|
[3] |
王晓峰, 勒斯木初, 张明明. “两屏三带”生态系统格局变化及其影响因素[J]. 生态学杂志, 2019, 38(7): 2138−2148. doi: 10.13292/j.1000-4890.201907.024
Wang X F, Lesimuchu, Zhang M M. Ecosystem pattern change and its influencing factors of “two barriers and three belts”[J]. Chinese Journal of Ecology, 2019, 38(7): 2138−2148. doi: 10.13292/j.1000-4890.201907.024
|
[4] |
张斯屿. 东北天然林保护工程森林态系统服务功能变化评估(1992—2015)[D]. 长春: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2019.
Zhang S Y. Evaluation of forest ecosystem service change in NFPP area in northeast China from 1992 to 2015 [D]. Changchun: University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences), 2019.
|
[5] |
Luo W, Kim H S, Zhao X, et al. New forest biomass carbon stock estimates in Northeast Asia based on multisource data[J]. Global Change Biology, 2020, 26(12): 7045−7066. doi: 10.1111/gcb.15376
|
[6] |
郝珉辉, 李晓宇, 夏梦洁, 等. 抚育采伐对蛟河次生针阔混交林功能结构和谱系结构的影响[J]. 林业科学, 2018, 54(5): 1−9. doi: 10.11707/j.1001-7488.20180501
Hao M H, Li X Y, Xia M J, et al. Effects of tending felling on functional and phylogenetic structures in a multi-species temperate secondary forest at Jiaohe in Jilin Province[J]. Scientia Silvae Sinicae, 2018, 54(5): 1−9. doi: 10.11707/j.1001-7488.20180501
|
[7] |
郝占庆, 王庆礼, 代力民. 天然林保护工程在东北林区生物多样性保护中的意义[C]// 中国科学院生物多样性委员会. 面向 21 世纪的中国生物多样性保护: 第三届全国生物多样性保护与持续利用研讨会论文集. 北京: 中国林业出版社, 1998: 30−35.
Hao Z Q, Wang Q L, Dai L M. The importance of the national programme for natural forests conservation on biodiversity conservation in northeast state owned forest areas of China[C]//Biodiversity Committee, the Chinese Academy of Sciences. China’s biodiversity conservation torward the 21st century: proceedings of the third national symposium on the conservation and sustainable use of biological diversity. Beijing: China Forestry Publishing House, 1998: 30−35.
|
[8] |
于大炮, 周旺明, 周莉, 等. 长白山区阔叶红松林经营历史与研究历程[J]. 应用生态学报, 2019, 30(5): 1426−1434. doi: 10.13287/j.1001-9332.201905.004
Yu D P, Zhou W M, Zhou L, et al. Exploring the history of the management theory and technology of broad-leaved Korean pine (Pinus koraiensis Sieb. et Zucc.) forest in Changbai Mountain Region, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1426−1434. doi: 10.13287/j.1001-9332.201905.004
|
[9] |
张会儒, 雷相东, 张春雨, 等. 森林质量评价及精准提升理论与技术研究[J]. 北京林业大学学报, 2019, 41(5): 1−18.
Zhang H R, Lei X D, Zhang C Y, et al. Research on theory and technology of forest quality evaluation and precision improvement[J]. Journal of Beijing Forestry University, 2019, 41(5): 1−18.
|
[10] |
Zhang Y, Chen H Y H, Reich P B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis[J]. Journal of Ecology, 2012, 100(3): 742−749. doi: 10.1111/j.1365-2745.2011.01944.x
|
[11] |
Liang J, Crowther T W, Picard N, et al. Positive biodiversity-productivity relationship predominant in global forests[J/OL]. Science, 2016, 354: aaf8957 [2022−02−19]. https://www.science.org/doi/10.1126/science.aaf8957.
|
[12] |
Forrester D I, Bauhus J. A review of processes behind diversity-productivity relationships in forests[J]. Current Forestry Reports, 2016, 2(1): 45−61. doi: 10.1007/s40725-016-0031-2
|
[13] |
van der Plas F. Biodiversity and ecosystem functioning in naturally assembled communities[J]. Biological Reviews, 2019, 94(4): 1220−1245.
|
[14] |
Loreau M. Does functional redundancy exist?[J]. Oikos, 2004, 104(3): 606−611. doi: 10.1111/j.0030-1299.2004.12685.x
|
[15] |
Tilman D, Knops J, Wedin D, et al. The influence of functional diversity and composition on ecosystem processes[J]. Science, 1997, 277: 1300−1302. doi: 10.1126/science.277.5330.1300
|
[16] |
Díaz S, Cabido M, Zak M, et al. Plant functional traits, ecosystem structure and land-use history along a climatic gradient in central-western Argentina[J]. Journal of Vegetation Science, 1999, 10(5): 651−660. doi: 10.2307/3237080
|
[17] |
Petchey O L, Gaston K J. Functional diversity (FD), species richness and community composition[J]. Ecology Letters, 2002, 5(3): 402−411. doi: 10.1046/j.1461-0248.2002.00339.x
|
[18] |
Reich P B, Wright I J, Cavender-Bares J, et al. The evolution of plant functional variation: traits, spectra, and strategies[J]. International Journal of Plant Sciences, 2003, 164(S3): S143−S164.
|
[19] |
Cornelissen J H C, Lavorel S, Garnier E, et al. Handbook of protocols for standardised and easy measurements of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4): 335−380. doi: 10.1071/BT02124
|
[20] |
Pérez-Harguindeguy N, Diaz S, Gamier E, et al. New handbook for standardised measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2013, 61(3): 167−234. doi: 10.1071/BT12225
|
[21] |
刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4): 325−339.
Liu X J, Ma K P. Plant functional traits: concepts, applications and future directions[J]. Scientia Sinica (Vitae), 2015, 45(4): 325−339.
|
[22] |
夏梦洁, 王晓霞, 郝珉辉, 等. 吉林蛟河针阔混交林功能性状分布格局及其对地形因素的响应[J]. 生态学报, 2021, 41(7): 2794−2802.
Xia M J, Wang X X, Hao M H, et al. Distribution pattern of functional traits and its response to topographic factors in a conifer and broad-leaved mixed forest in Jiaohe, Jilin Province[J]. Acta Ecologica Sinica, 2021, 41(7): 2794−2802.
|
[23] |
Violle C, Navas M L, Vile D, et al. Let the concept of trait be functional![J]. Oikos, 2007, 116(5): 882−892. doi: 10.1111/j.0030-1299.2007.15559.x
|
[24] |
Villéger S, Mason N W H, Mouillot D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology[J]. Ecology, 2008, 89(8): 2290−2301. doi: 10.1890/07-1206.1
|
[25] |
Laliberté E, Legendre P. A distance-based framework for measuring functional diversity from multiple traits[J]. Ecology, 2010, 91(1): 299−305. doi: 10.1890/08-2244.1
|
[26] |
Tobner C M, Paquette A, Gravel D, et al. Functional identity is the main driver of diversity effects in young tree communities[J]. Ecology Letters, 2016, 19(6): 638−647. doi: 10.1111/ele.12600
|
[27] |
Hao M, Messier C, Gen Y, et al. Functional traits drive biomass and productivity through multiple mechanisms in a temperate secondary forest[J]. European Journal of Forest Research, 2020, 139(6): 1−10.
|
[28] |
Grime J P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects[J]. Journal of Ecology, 1998, 86(6): 902−910. doi: 10.1046/j.1365-2745.1998.00306.x
|
[29] |
Lohbeck M, Poorter L, Paz H, et al. Functional diversity changes during tropical forest succession[J]. Perspectives in Plant Ecology Evolution & Systematics, 2012, 14(2): 89−96.
|
[30] |
Lamlom S H, Savidge R A. A reassessment of carbon content in wood: variation within and between 41 North American species[J]. Biomass and Bioenergy, 2003, 25(4): 381−388. doi: 10.1016/S0961-9534(03)00033-3
|
[31] |
郝珉辉, 张忠辉, 赵珊珊, 等. 吉林蛟河针阔混交林树木生长的空间关联格局[J]. 生态学报, 2017, 37(6): 1922−1930.
Hao M H, Zhang Z H, Zhao S S, et al. Spatial autocorrelation patterns of tree growth in a coniferous and broad-leaved mixed forest in Jiaohe of Jilin Province[J]. Acta Ecologica Sinica, 2017, 37(6): 1922−1930.
|
[32] |
郝珉辉, 张忠辉, 赵珊珊, 等. 吉林蛟河针阔混交林树木生长与生境的关联性[J]. 生态学报, 2017, 37(10): 3437−3444.
Hao M H, Zhang Z H, Zhao S S, et al. Habitat associations of tree growth in a coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province[J]. Acta Ecologica Sinica, 2017, 37(10): 3437−3444.
|
[33] |
Harms K E, Condit R, Hubbell S P, et al. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot[J]. Journal of Ecology, 2001, 89(6): 947−959. doi: 10.1111/j.1365-2745.2001.00615.x
|
[34] |
Hao M, Ganeshaiah K N, Zhang C, et al. Discriminating among forest communities based on taxonomic, phylogenetic and trait distances[J]. Forest Ecology and Management, 2019, 440: 40−47. doi: 10.1016/j.foreco.2019.03.006
|
[35] |
何怀江, 叶尔江·拜克吐尔汉, 张春雨, 等. 吉林蛟河针阔混交林12个树种生物量分配规律[J]. 北京林业大学学报, 2016, 38(4): 53−62. doi: 10.13332/j.1000-1522.20150430
He H J, Yeerjiang·Baiketuerhan, Zhang C Y, et al. Biomass allocation of twelve tree species in coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province, northeast China[J]. Journal of Beijing Forestry University, 2016, 38(4): 53−62. doi: 10.13332/j.1000-1522.20150430
|
[36] |
He H, Zhang C, Zhao X, et al. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China[J]. Plos One, 2018, 13(1): e0186226. doi: 10.1371/journal.pone.0186226
|
[37] |
van der Sande M T, Arets E J M M, Pena-Claros M, et al. Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest[J]. Functional Ecology, 2018, 32(2): 461−474. doi: 10.1111/1365-2435.12968
|
[38] |
van der Sande M T, Pena-Claros M, Ascarrunz N, et al. Abiotic and biotic drivers of biomass change in a Neotropical forest[J]. Journal of Ecology, 2017, 105(5): 1223−1234. doi: 10.1111/1365-2745.12756
|
[39] |
Ruiz-Benito P, Gomez-Aparicio L, Paquette A, et al. Diversity increases carbon storage and tree productivity in Spanish forests[J]. Global Ecology and Biogeography, 2014, 23(3): 311−322. doi: 10.1111/geb.12126
|
[40] |
Garcia-Palacios P, Shaw E A, Wall D H, et al. Contrasting mass-ratio vs. niche complementarity effects on litter C and N loss during decomposition along a regional climatic gradient[J]. Journal of Ecology, 2017, 105(4): 968−978. doi: 10.1111/1365-2745.12730
|
[41] |
Liu X, Swenson N G, Zhang J, et al. The environment and space, not phylogeny, determine trait dispersion in a subtropical forest[J]. Functional Ecology, 2013, 27(1): 264−272. doi: 10.1111/1365-2435.12018
|
[42] |
Ratcliffe S, Wirth C, Jucker T, et al. Biodiversity and ecosystem functioning relations in European forests depend on environmental context[J]. Ecology Letters, 2017, 20(11): 1414−1426. doi: 10.1111/ele.12849
|
[43] |
Finegan B, Pena-Claros M, Oliveira A D, et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses[J]. Journal of Ecology, 2015, 103(1): 191−201. doi: 10.1111/1365-2745.12346
|
[44] |
Borcard D, Gillet F, Legendre P. Numerical ecology with R[M]. Berlin: Springer, 2018.
|
[45] |
Tan L, Fan C, Zhang C, et al. Understanding and protecting forest biodiversity in relation to species and local contributions to beta diversity[J]. European Journal of Forest Research, 2019, 138(6): 1005−1013. doi: 10.1007/s10342-019-01220-3
|
[46] |
Hoyle R H. Handbook of structural equation modeling[M]. New York: Guilford Press, 2012.
|
[47] |
Rosseel Y. lavaan: an R package for structural equation modeling[J]. Journal of Statistical Software, 2012, 48(2): 1−36.
|
[48] |
Stephenson N L, van Mantgem P J. Forest turnover rates follow global and regional patterns of productivity[J]. Ecology Letters, 2005, 8(5): 524−531. doi: 10.1111/j.1461-0248.2005.00746.x
|
[49] |
Keeling H C, Phillips O L. The global relationship between forest productivity and biomass[J]. Global Ecology and Biogeography, 2007, 16(5): 618−631. doi: 10.1111/j.1466-8238.2007.00314.x
|
[50] |
Díaz S, Hector A, Wardle D A. Biodiversity in forest carbon sequestration initiatives: not just a side benefit[J]. Current Opinion in Environmental Sustainability, 2009, 1(1): 55−60. doi: 10.1016/j.cosust.2009.08.001
|
[51] |
Searle E B, Chen H Y, Paquette A. Higher tree diversity is linked to higher tree mortality[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(19): e2013171119 [2022−08−20]. https://doi.org/10.1073/pnas.2013171119.
|
[52] |
Lasky J R, Uriarte M, Boukili V K, et al. Trait-mediated assembly processes predict successional changes in community diversity of tropical forests[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(15): 5616−5621. doi: 10.1073/pnas.1319342111
|
[53] |
Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821−827. doi: 10.1038/nature02403
|
[54] |
Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum[J]. Ecology Letters, 2009, 12(4): 351−366. doi: 10.1111/j.1461-0248.2009.01285.x
|
[55] |
Prado-Junior J A, Schiavini I, Vale V S, et al. Conservative species drive biomass productivity in tropical dry forests[J]. Journal of Ecology, 2016, 104(3): 817−827. doi: 10.1111/1365-2745.12543
|
[56] |
Ali A, Mattsson E. Wood density is a sustainability indicator for the management of dry zone homegarden agroforests: evidences from biodiversity-ecosystem function relationships[J]. Ecological Indicators, 2019, 105: 474−482. doi: 10.1016/j.ecolind.2018.04.024
|
[57] |
Roscher C, Schumacher J, Gubsch M, et al. Using plant functional traits to explain diversity-productivity relationships[J]. Plos One, 2012, 7(5): e36760. doi: 10.1371/journal.pone.0036760
|
[58] |
Aleixo I, Norris D, Hemerik L, et al. Amazonian rainforest tree mortality driven by climate and functional traits[J]. Nature Climate Change, 2019, 9(5): 384−388. doi: 10.1038/s41558-019-0458-0
|
[59] |
Morin X. Species richness promotes canopy packing: a promising step towards a better understanding of the mechanisms driving the diversity effects on forest functioning[J]. Functional Ecology, 2015, 29(8): 993−994. doi: 10.1111/1365-2435.12473
|
[60] |
Jucker T, Bouriaud O, Coomes D A. Crown plasticity enables trees to optimize canopy packing in mixed-species forests[J]. Functional Ecology, 2015, 29(8): 1078−1086. doi: 10.1111/1365-2435.12428
|
[61] |
Ouyang S, Xiang W, Wang X, et al. Effects of stand age, richness and density on productivity in subtropical forests in China[J]. Journal of Ecology, 2019, 107(5): 2266−2277. doi: 10.1111/1365-2745.13194
|