• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xu Huimin, Ru Kaixing, Ci Xiaolei, Wang Junya, Li Junying, Wang Junqing, Chen Sheng, Xu Feng. Fabrication of lignin containing nanocellulose and films from wheat straw pretreated by deep eutectic solvent[J]. Journal of Beijing Forestry University, 2024, 46(11): 141-147. DOI: 10.12171/j.1000-1522.20240260
Citation: Xu Huimin, Ru Kaixing, Ci Xiaolei, Wang Junya, Li Junying, Wang Junqing, Chen Sheng, Xu Feng. Fabrication of lignin containing nanocellulose and films from wheat straw pretreated by deep eutectic solvent[J]. Journal of Beijing Forestry University, 2024, 46(11): 141-147. DOI: 10.12171/j.1000-1522.20240260

Fabrication of lignin containing nanocellulose and films from wheat straw pretreated by deep eutectic solvent

More Information
  • Received Date: August 13, 2024
  • Revised Date: November 07, 2024
  • Accepted Date: November 11, 2024
  • Available Online: November 13, 2024
  • Objective 

    In order to efficiently utilize wheat straw raw materials, a new type of deep eutectic solvent (DES) was developed to achieve the preparation of lignin containing nanocellulose and the subsequent construction of functional materials.

    Method 

    Wheat straw was used as the raw material. Lignin containing nanocellulose was prepared by different DES pretreatments (benzyltrimethylammonium chloride-oxalic acid DES and benzyltriethylammonium chloride-oxalic acid DES) combined with high-pressure homogenization. Polyvinyl alcohol (PVA)/lignin containing nanocellulose composite films were prepared using the solution casting method. The study comparatively examined the microstructure, chemical groups, thermal stability, dispersibility lignin containing nanocellulose, as well as the optical properties, microstructure, and mechanical properties of composite films.

    Result 

    The residues of wheat straw pretreated by benzyltrimethylammonium chloride-oxalic acid DES showed smaller residue sizes and enhanced thermal stability. The obtained lignin containing nanocellulose exhibited stronger negative charge (−8.62 mV) and the composite films demonstrated higher haze (36.82%). In contrast, lignin containing nanocellulose prepared with benzyltriethylammonium chloride-oxalic acid DES maintained higher transparency of composite films (> 67%) and achieved a maximum film tensile strength of 57.16 MPa.

    Conclusion 

    Benzyltrimethylammonium chloride-oxalic acid DES is more advantageous in enhancing the negative charge of lignin-containing nanocellulose and increasing haze of composite films. Benzyltriethylammonium chloride-oxalic acid DES is more effective in improving the transparency and mechanical strength of composite films, meeting the needs of different light management applications.

  • [1]
    王付云, 朱元芳, 张建胜, 等. 农业废弃物资源化利用现状研究进展[J]. 现代畜牧科技, 2024, 52(10): 98−101.

    Wang F Y, Zhu Y F, Zhang J S, et al. Research progress on the utilization of agricultural waste resources[J]. Modern Animal Husbandry Science & Technology, 2024, 52(10): 98−101.
    [2]
    薛蓝馨, 林兆云, 陈嘉川, 等. 基于制浆废液和麦草废渣的生物质颗粒燃料预测模型的建立及分析[J]. 林产工业, 2024, 61(3): 8−14.

    Xue L X, Lin Z Y, Chen J C, et al. Establishment and analysis of biomass granular fuel prediction model based on pulping waste liquid and wheat straw residue[J]. China Forest Products Industry, 2024, 61(3): 8−14.
    [3]
    Dufresne A. Nanocellulose: a new ageless bionanomaterial[J]. Materials Today, 2013, 16(6): 220−227. doi: 10.1016/j.mattod.2013.06.004
    [4]
    Trache D, Tarchoun A F, Derradji M, et al. Nanocellulose: from fundamentals to advanced applications[J]. Frontiers in Chemistry, 2020, 8: 392.
    [5]
    Thakur V, Guleria A, Kumar S, et al. Recent advances in nanocellulose processing, functionalization and applications: a review[J]. Materials Advances, 2021, 2(6): 1872−1895. doi: 10.1039/D1MA00049G
    [6]
    Qi Y, Guo Y, Liza A A, et al. Nanocellulose: a review on preparation routes and applications in functional materials[J]. Cellulose, 2023, 30(7): 4115−4147. doi: 10.1007/s10570-023-05169-w
    [7]
    贾丽佳, 王汉琛, 黄彪, 等. 纳米纤维素的制备及功能应用[J]. 生物质化学工程, 2024, 58(4): 43−56. doi: 10.3969/j.issn.1673-5854.2024.04.007

    Jia L J, Wang H C, Huang B, et al. Preparation and functional application of nanocellulose[J]. Biomass Chemical Engineering, 2024, 58(4): 43−56. doi: 10.3969/j.issn.1673-5854.2024.04.007
    [8]
    Zhang F, Shen R, Li N, et al. Nanocellulose: an amazing nanomaterial with diverse applications in food science[J]. Carbohydrate Polymers, 2023, 304: 120497. doi: 10.1016/j.carbpol.2022.120497
    [9]
    Habibi Y, Lucia L A, Rojas O J. Cellulose nanocrystals: chemistry, self-assembly, and applications[J]. Chemical Reviews, 2010, 110(6): 3479−3500.
    [10]
    Koga H, Saito T, Kitaoka T, et al. Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube[J]. Biomacromolecules, 2013, 14(4): 1160−1165. doi: 10.1021/bm400075f
    [11]
    Wu C, McClements D J, He M, et al. Okara nanocellulose fabricated using combined chemical and mechanical treatments: Structure and properties[J]. Journal of Molecular Liquids, 2021, 335: 116231. doi: 10.1016/j.molliq.2021.116231
    [12]
    Frey M W. Electrospinning cellulose and cellulose derivatives[J]. Polymer Reviews, 2008, 48(2): 378−391.
    [13]
    高佳, 王攀攀, 王丽君, 等. 含木质素的纤维素纳米纤丝的预处理工艺及研究进展[J]. 中国造纸, 2024, 43(2): 31−38. doi: 10.11980/j.issn.0254-508X.2024.02.005

    Gao J, Wang P P, Wang L J, et al. Pretreatment technology and progress research for lignin-containing cellulose nanofibrils[J]. China Pulp & Paper, 2024, 43(2): 31−38. doi: 10.11980/j.issn.0254-508X.2024.02.005
    [14]
    Kumar A, Sood A, Maiti P, et al. Lignin-containing nanocelluloses (LNCs) as renewable and sustainable alternatives: prospects, and challenges[J]. Current Opinion in Green and Sustainable Chemistry, 2023, 41: 100830.
    [15]
    Gu W, Zeng S, Dauletbek A, et al. Study on preparation of lignin-containing nanocellulose from bamboo parenchyma[J]. Journal of Renewable Materials, 2022, 10(2): 385. doi: 10.32604/jrm.2022.016457
    [16]
    Kim D, Jeong J, Ryu J A, et al. In vitro evaluation of lignin-containing nanocellulose[J]. Materials, 2020, 13(15): 3365. doi: 10.3390/ma13153365
    [17]
    Smith E L, Abbott A P, Ryder K S. Deep eutectic solvents (DESs) and their applications[J]. Chemical Reviews, 2014, 114(21): 11060−11082. doi: 10.1021/cr300162p
    [18]
    Loow Y L, New E K, Yang G H, et al. Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion[J]. Cellulose, 2017, 24: 3591−3618.
    [19]
    Satlewal A, Agrawal R, Bhagia S, et al. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities[J]. Biotechnology Advances, 2018, 36(8): 2032−2050. doi: 10.1016/j.biotechadv.2018.08.009
    [20]
    Jiang J, Carrillo-Enríquez N C, Oguzlu H, et al. Acidic deep eutectic solvent assisted isolation of lignin containing nanocellulose from thermomechanical pulp[J]. Carbohydrate Polymers, 2020, 247: 116727. doi: 10.1016/j.carbpol.2020.116727
    [21]
    Hong S, Song Y, Yuan Y, et al. Production and characterization of lignin containing nanocellulose from luffa through an acidic deep eutectic solvent treatment and systematic fractionation[J]. Industrial Crops and Products, 2020, 143: 111913. doi: 10.1016/j.indcrop.2019.111913
    [22]
    Shu F, Guo Y, Huang L, et al. Production of lignin-containing nanocellulose from poplar using ternary deep eutectic solvents pretreatment[J]. Industrial Crops and Products, 2022, 177: 114404.
    [23]
    Li X, Ning C, Li L, et al. Fabricating lignin-containing cellulose nanofibrils with unique properties from agricultural residues with assistance of deep eutectic solvents[J]. Carbohydrate Polymers, 2021, 274: 118650. doi: 10.1016/j.carbpol.2021.118650
  • Related Articles

    [1]Wang Xueyuan, Huang Yuxiang, Ma Erni. Research on mechanical properties of Phyllostachys edulis heat treatment materials based on cellulose skeleton[J]. Journal of Beijing Forestry University, 2023, 45(7): 130-138. DOI: 10.12171/j.1000-1522.20230079
    [2]Guan Cheng, Liu Jinhao, Zhang Houjiang, Zhou Lujing. Literature review of mechanical properties of full-size wood composite panels using nondestructive testing technique[J]. Journal of Beijing Forestry University, 2019, 41(9): 164-172. DOI: 10.13332/j.1000-1522.20180379
    [3]Su Ling, Pang Jiuyin, Ren Shixue, Li Shujun, Jiang Guiquan. Preparation of lignin-based polyelectrolyte film and its mechanical properties[J]. Journal of Beijing Forestry University, 2019, 41(2): 125-133. DOI: 10.13332/j.1000-1522.20180281
    [4]ZHANG Feng, ZHANG Li, QI Chu-sheng, ZHANG Yang, MU Jun. Effects of pretreatment methods on properties of corn straw board[J]. Journal of Beijing Forestry University, 2017, 39(9): 112-118. DOI: 10.13332/j.1000-1522.20170069
    [5]GE Xiao-wen, WANG Li-hai, HOU Jie-jian, RONG Bin-bin, YUE Xiao-quan, ZHANG Sheng-ming. Relationship among microstructure, mechanical properties and chemical compositions in Populus cathayana sapwood during brown-rot decay.[J]. Journal of Beijing Forestry University, 2016, 38(10): 112-122. DOI: 10.13332/j.1000-1522.20160098
    [6]REN Wen-han, ZHANG Dan, WANG Ge, LI Wen-yan, CHENG Hai-tao. Mechanical and thermal properties of bamboo filler-high density polyethylene composites[J]. Journal of Beijing Forestry University, 2014, 36(4): 133-140. DOI: 10.13332/j.cnki.jbfu.2014.04.001
    [7]PAN Ming-zhu, MEI Chang-tong.. Effects of nano SiO2-ammonium polyphosphate on the interfacial and mechanical properties of wood fiber-polyethylene composites.[J]. Journal of Beijing Forestry University, 2013, 35(5): 117-122.
    [8]ZHANG Hou-jiang, ZHU Lei, SUN Yan-liang, WANG Xi-ping. Determining main mechanical properties of ancient architectural timber[J]. Journal of Beijing Forestry University, 2011, 33(5): 126-129.
    [9]LI Yan-jun, TANG Rong-qiang, BAO Bin-fu, SUN Hui. Mechanical properties and dimensional stability of heat-treated Chinese fir[J]. Journal of Beijing Forestry University, 2010, 32(4): 232-236.
    [10]YU Yan, WANG Ge, FEI Ben-hua, CAO Shuang-ping, HUANG Yan-hui, CHEN Lu-tie. Development and application of microtester for mechanical property determination of short plant fibers.[J]. Journal of Beijing Forestry University, 2010, 32(3): 150-154.

Catalog

    Article views (154) PDF downloads (42) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return