• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Cui Tingting, Zhu Liying, Zhang Litian, Ye Yongxiang, Lin Qinlan, Yan Minlong. Analysis of spatial vitality characteristics and influencing factors of Wuyi Mountain National Park from online and offline perspectives[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240278
Citation: Cui Tingting, Zhu Liying, Zhang Litian, Ye Yongxiang, Lin Qinlan, Yan Minlong. Analysis of spatial vitality characteristics and influencing factors of Wuyi Mountain National Park from online and offline perspectives[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240278

Analysis of spatial vitality characteristics and influencing factors of Wuyi Mountain National Park from online and offline perspectives

More Information
  • Received Date: August 25, 2024
  • Revised Date: February 17, 2025
  • Available Online: February 25, 2025
  • Objective 

    The objective of this study is to explore the characteristics and influencing factors of spatial vitality in national parks, and to provide a scientific basis for the spatial planning of national parks and the redevelopment of eco-social value of landscape resources.

    Method 

    Taking the eastern scenic spot of Wuyi Mountain National Park as an example, based on multi-source social media data, kernel density analysis, spatial autocorrelation analysis and geographically weighted regression model were used to analyze the spatial distribution characteristics of online and offline vitality, and the influence coefficient of natural environment and social experience factors on vitality and its spatial heterogeneity relationship were discussed.

    Result 

    (1) The spatial clustering of both online and offline vitality followed a “multi-center, localized clustering” pattern, with the core vitality zones concentrated in the Jiuquxi River, Fujian Province of eastern China. (2) Park vitality was influenced by various factors, which exhibited different correlations with online and offline vitality. Common influencing factors for both included distance to water bodies, NDVI, slope, commercial service facilities, tourist attraction facilities, attraction popularity, and geographical accessibility. (3) Among natural factors, distance to water bodies was the primary influencing factor for both online (−0.033 6) and offline (−0.085 7) vitality. In the social experience dimension, quality rating of attraction resources showed the strongest positive correlation with online vitality (0.438 8), while density of basic service facilities had the strongest positive correlation with offline vitality (0.346 9). (4) Different influencing factors had varying positive and negative effects on online and offline vitality, exhibiting significant spatial heterogeneity. All influencing factors demonstrated both positive and negative impacts on online and offline vitality.

    Conclusion 

    The research perspective of collaborative analysis of spatial distribution characteristics of online and offline vitality in national parks has the advantages of comprehensive spatial quantification research, and the relevant analysis results provide a scientific basis for the optimization of spatial layout and the overall improvement of vitality of national parks. Relying on the unique features of landscape resources and combining the dissemination effect of online media, the spatial vitality of national parks can be enhanced; infrastructure construction should be strengthened to meet the diverse needs of tourists and fully tap the potential of existing spaces; accurately assess the ecological environment carrying capacity of national parks and encourage reasonable development and utilization of low-vitality areas.

  • [1]
    涂宇倩, 张婧雅, 邹文昊, 等. 武夷山国家公园文化景观时空特征及自然环境影响因素研究[J]. 城市发展研究, 2023, 30(1): 57−65.

    Tu Y Q, Zhang J Y, Zou W H, et al. Spatial and temporal characteristics of cultural landscape and influencing factors of natural environment in Wuyi Mountain National Park[J]. Urban Development Studies, 2023, 30(1): 57−65.
    [2]
    朱兴林, 黄巧燕, 姚亮, 等. 基于数字足迹的自驾旅游流时空分布及空间网络特征分析[J]. 西北师范大学学报(自然科学版), 2024, 60(2): 123−134.

    Zhu X L, Huang Q Y, Yao L, et al. Spatio-temporal distribution and spatial network characterization of self-driving tourism flows based on digital footprints[J]. Journal of Northwest Normal University (Natural Science), 2024, 60(2): 123−134.
    [3]
    Orsi F, Geneletti D. Using geotagged photographs and GIS analysis to estimate visitor flows in natural areas[J]. Journal for Nature Conservation, 2013, 21(5): 359−368. doi: 10.1016/j.jnc.2013.03.001
    [4]
    丁杰, 沈新. 旅游型乡村空间活力的分布特征及其影响机制: 基于多源数据的宏村实证分析[J]. 旅游科学, 2023, 37(5): 61−79.

    Ding J, Shen X. Distribution characteristics and influencing mechanism of spatial vitality of tourist villages: an empirical analysis of Hongcun Village based on multi-source data[J]. Tourism Science, 2023, 37(5): 61−79.
    [5]
    Sun P, Liu P, Song Y. Seasonal variations in urban park characteristics and visitation patterns in Atlanta: a big data study using smartphone user mobility[J]. Urban Forestry & Urban Greening, 2024, 91: 128166.
    [6]
    Ciesielski M, Stereńczak K. Using Flickr data and selected environmental characteristics to analyse the temporal and spatial distribution of activities in forest areas[J]. Forest Policy and Economics, 2021, 129: 102509. doi: 10.1016/j.forpol.2021.102509
    [7]
    Donahue M L, Keeler B L, Wood S A, et al. Using social media to understand drivers of urban park visitation in the Twin Cities, MN[J]. Landscape and Urban Planning, 2018, 175: 1−10. doi: 10.1016/j.landurbplan.2018.02.006
    [8]
    李少英, 李少丽, 黄姿薇, 等. 基于位置大数据的中国5A级景区活力强度空间分异特征与成因[J]. 地理科学, 2023, 43(7): 1239−1248.

    Li S Y, Li S L, Huang Z W, et al. Spatial differentiation characteristics and cause analysis of vitality intensity of China's 5A-level scenic spots based on Tencent's location big data[J]. Scientia Geographica Sinica, 2023, 43(7): 1239−1248.
    [9]
    Bhatt P, Pickering C M. Destination image of Chitwan National Park, Nepal: insights from a content analysis of online photographs[J]. Journal of Outdoor Recreation and Tourism, 2022, 37: 100488. doi: 10.1016/j.jort.2022.100488
    [10]
    Zhang Z R, Liu J P, Wang C Y, et al. A spatial projection pursuit model for identifying comprehensive urban vitality on blocks using multisource geospatial data[J]. Sustainable Cities and Society, 2024, 100: 104998. doi: 10.1016/j.scs.2023.104998
    [11]
    Heikinheimo V, Tenkanen H, Bergroth C, et al. Understanding the use of urban green spaces from user-generated geographic information[J]. Landscape and Urban Planning, 2020, 201: 103845. doi: 10.1016/j.landurbplan.2020.103845
    [12]
    Havinga I, Marcos D, Bogaart P, et al. Understanding the sentiment associated with cultural ecosystem services using images and text from social media[J]. Ecosystem Services, 2024, 65: 101581. doi: 10.1016/j.ecoser.2023.101581
    [13]
    Liu W, Chen Q, Li Y, et al. Application of GPS tracking for understanding recreational flows within urban park[J]. Urban Forestry & Urban Greening, 2021, 63: 1−11.
    [14]
    叶永祥, 崔亭亭, 陈馨, 等. 基于多源数据的城市公园网络关注度时空特征与影响因素研究[J]. 南京林业大学学报(自然科学版), 2024, 48(6): 183−192.

    Ye Y X, Cui T T, Chen X, et al. Spatial and temporal characteristics and influencing factors of attention in urban park network based on multi-source data[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2024, 48(6): 183−192.
    [15]
    Kidd A M, Monz C, D’Antonio A, et al. The effect of minimum impact education on visitor spatial behavior in parks and protected areas: an experimental investigation using GPS-based tracking[J]. Journal of Environmental Management, 2015, 162: 53−62.
    [16]
    Ghermandi A. Integrating social media analysis and revealed preference methods to value the recreation services of ecologically engineered wetlands[J]. Ecosystem Services, 2018, 31: 351−357. doi: 10.1016/j.ecoser.2017.12.012
    [17]
    张佳宝, 乌恩. 基于游客感知价值的国家公园游憩功能研究: 以黄石国家公园和武夷山国家公园为例[J]. 世界地理研究, 2023, 32(2): 146−157.

    Zhang J B, Wu E. Recreation function in national parks based on tourists' perceived value: two case studies of Yellowstone National Park and Wuyishan National Park[J]. World Regional Studies, 2023, 32(2): 146−157.
    [18]
    Owuor I, Hochmair H H, Paulus G. Use of social media data, online reviews and wikipedia page views to measure visitation patterns of outdoor attractions[J]. Journal of Outdoor Recreation and Tourism, 2023, 44: 100681. doi: 10.1016/j.jort.2023.100681
    [19]
    杨茗涵, 黄晓军, 宋涛. 基于“显隐互鉴”的公共空间活力评价研究: 以西安市公园绿地为例[J]. 人文地理, 2023, 38(5): 118−125.

    Yang M H, Huang X J, Song T. A study on the evaluation of urban public space vitality based on “explicit and implicit mutual learning”: a case of park green space in Xi’an[J]. Human Geography, 2023, 38(5): 118−125.
    [20]
    庄迎鑫, 高扬仪, 崔亭亭, 等. 诗词视域下武夷山九曲溪生态系统灵感服务时空分布特征及影响因素[J]. 中国园林, 1−8.

    Zhuang Y X, Gao Y Y, Cui T T, et al. Spatial and temporal distribution characteristics and influencing factors of ecosystem inspirational service in Jiuquxi ecosystem of Wuyi Mountain from the perspective of poetry[J]. Chinese Landscape Architecture, 2024, 1−8.
    [21]
    叶永祥, 陈馨, 崔亭亭, 等. 基于耦合协调度的城市公园“线上−线下”活力空间特征与影响因素[J]. 天津师范大学学报(自然科学版), 2024, 44(3): 53−59.

    Ye Y X, Chen X, Cui T T, et al. Spatial characteristics and influencing factors of “online-offline” vitality of urban parks based on coupling coordination[J]. Journal of Tianjin Normal University(Natural Science Edition), 2024, 44(3): 53−59.
    [22]
    吕飞, 王帅. 线上线下视角的黄浦江核心段滨水空间活力测度与影响因素研究[J]. 规划师, 2023, 39(9): 123−130.

    Lü F, Wang S. Space vitality measurement and its influencing factors of the core section of Huangpu Riverfront area from both online and offline perspectives[J]. Planners, 2023, 39(9): 123−130.
    [23]
    孙硕, 郑文俊, 樊亚明, 等. 基于GPS数据的桂林龙脊梯田遗产地游客时空行为特征及其影响因素[J]. 桂林理工大学学报, 2023, 43(4): 720−729.

    Sun S, Zheng W J, Fan Y M, et al. Spatial-temporal characteristics and influencing factors of tourist behavior in Guilin Longji terrace heritage site based on GPS data[J]. Journal of Guilin University of Technology, 2023, 43(4): 720−729.
    [24]
    王储, 卢长宝, 把多勋, 等. 中国代表性滑雪场网络关注度时空演变及影响因素[J]. 自然资源学报, 2022, 37(9): 2367−2386. doi: 10.31497/zrzyxb.20220912

    Wang C, Lu C B, Ba D X, et al. Spatio-temporal evolution and influencing factors of network attention of representative ski resorts in China[J]. Journal of Natural Resources, 2022, 37(9): 2367−2386. doi: 10.31497/zrzyxb.20220912
    [25]
    Volker S, Kistemann T. The impact of blue space on human health and well-being-salutogenetic health effects of inland surface waters: a review[J]. International Journal of Hygiene and Environmental Health, 2011, 214(6): 449−460. doi: 10.1016/j.ijheh.2011.05.001
    [26]
    White M, Smith A, Humphryes K, et al. Blue space: the importance of water for preference, affect, and restorativeness ratings of natural and built scenes[J]. Journal of Environmental Psychology, 2010, 30(4): 482−493. doi: 10.1016/j.jenvp.2010.04.004
    [27]
    Gao F, Liao S Y, Wang Z X, et al. Revealing disparities in different types of park visits based on cellphone signaling data in Guangzhou, China[J]. Journal of Environmental Management, 2024, 351: 119969. doi: 10.1016/j.jenvman.2023.119969
    [28]
    张艺凡, 孙世界. 城市公园对文化消费空间集聚的影响研究: 以成都主城为例[J]. 中国园林, 2023, 39(8): 83−89.

    Zhang Y F, Sun S J. The influence of urban parks on the agglomeration of cultural consumption space: a case study of Chengdu[J]. Chinese Landscape Architecture, 2023, 39(8): 83−89.
    [29]
    Fan Z X, Duan J, Lu Y, et al. A geographical detector study on factors influencing urban park use in Nanjing, China[J]. Urban Forestry & Urban Greening, 2021, 59: 126996.
    [30]
    王琪林, 杨霞, 方怡. 四川省旅游资源丰裕度与旅游网络关注度空间错位演变及影响因素分析[J]. 旅游科学, 2023, 37(1): 43−58.

    Wang Q L, Yang X, Fang Y. A research on the spatial mismatch evolution and influencing factors of tourism resource abundance and tourism network attention in Sichuan Province[J]. Tourism Science, 2023, 37(1): 43−58.
    [31]
    Grilli G, Mohan G, Curtis J. Public park attributes, park visits, and associated health status[J]. Landscape and Urban Planning, 2020, 199: 103814. doi: 10.1016/j.landurbplan.2020.103814
    [32]
    谭德明, 饶佳艺. 深圳市都市型滨水空间活力影响因素分析[J]. 地球信息科学学报, 2023, 25(4): 809−822.

    Tan D M, Rao J Y. Analysis on influencing factors of urban waterfront space vitality in Shenzhen[J]. Journal of Geo-Information Science, 2023, 25(4): 809−822.
  • Related Articles

    [1]Guo Jialun, Zhong Haomin, Zhao Junbo, Chen Yao. Deresination rate prediction of Masson pine wood based on support vector regression (SVR)[J]. Journal of Beijing Forestry University, 2025, 47(3): 151-161. DOI: 10.12171/j.1000-1522.20240359
    [2]Wu Xinhua, Miao Zheng, Hao Yuanshuo, Dong Lihu. Mixed effect model of stem density of Populus nigra × P. simonii based on beta regression[J]. Journal of Beijing Forestry University, 2023, 45(5): 67-78. DOI: 10.12171/j.1000-1522.20220450
    [3]Liang Ruiting, Sun Yujun, Zhou Lai. Modeling variable exponential taper function for Cunninghamia lanceolata based on quantile regression[J]. Journal of Beijing Forestry University, 2021, 43(7): 70-78. DOI: 10.12171/j.1000-1522.20200253
    [4]Chen Keyi, Zhang Huiru, Zhang Bo, He Youjun. Spatial distribution simulation of recruitment trees of natural secondary forest based on geographically weighted regression[J]. Journal of Beijing Forestry University, 2021, 43(2): 1-9. DOI: 10.12171/j.1000-1522.20200157
    [5]Shao Ming, Dong Yuxiang, Lin Chensong. Spatio-temporal evolution and driving factors of ecosystem services in Chengdu-Chongqing urban agglomeration of southwestern China based on GWR model[J]. Journal of Beijing Forestry University, 2020, 42(11): 118-129. DOI: 10.12171/j.1000-1522.20200217
    [6]Wu Wenbin, He Kuaikuai, Di Hao, Niu Shihui, Ma Yanguang, Zhang Zijie, Li Yue. Genetic structure and geographic system of geographical population of Pinus tabuliformis mountain range based on SSR in Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2018, 40(10): 51-59. DOI: 10.13332/j.1000-1522.20180057
    [7]WANG Man-lin, DONG Li-hu, LI Feng-ri. First-order branch number simulation for Larix olgensis plantation through Poisson regression mixed effect model[J]. Journal of Beijing Forestry University, 2017, 39(11): 45-55. DOI: 10.13332/j.1000-1522.20170204
    [8]CHEN Yong-hui, ZHANG Xiao-li, LIU Hui-ling, WANG Shu-han. Distance-weighted size ratio competition index in the forest of Picea crassifolia in Dayekou, Gansu Province of northwestern China[J]. Journal of Beijing Forestry University, 2017, 39(2): 40-48. DOI: 10.13332/j.1000-1522.20160210
    [9]LI Ji-ping, FANG Xiao-na, FENG Yao, SUN Hua, CAO Xiao-yu, ZHAO Chun-yan, LI Jian-jun. Tree competition indexes based on weighted Voronoi diagram[J]. Journal of Beijing Forestry University, 2015, 37(3): 61-68. DOI: 10.13332/j.1000-1522.20140310
    [10]ZHAO Xiao-song, GUAN De-xin, WU Jia-bing, JIN Chang-jie, HAN Shi-jie. Distribution of footprint and flux source area of the mixed forest of broad-leaved and Korean pine in Changbai Mountain[J]. Journal of Beijing Forestry University, 2005, 27(3): 17-23.
  • Cited by

    Periodical cited type(8)

    1. 林立,何月秋,王豪,陆云峰,王建军,黄华宏. 代谢组与转录组联合解析赤皮青冈叶片黄化变异机制. 广西植物. 2024(07): 1319-1336 .
    2. 李可悦,王丹丹,刘江涛,申琼,盖少杰,武峻新. 西葫芦嫩瓜皮叶绿素合成代谢与其皮色形成的关联性研究. 植物遗传资源学报. 2024(08): 1336-1346 .
    3. 靳程,曹孟岩,杨衡荣,项瑶,杨建峰,时波,黄颂谊,辛国荣. 施肥和修剪对‘兰引Ⅲ号’草坪冬季质量及土壤特性的影响. 草地学报. 2024(09): 3006-3016 .
    4. 邓皓予,吴一超,符腾,杨在君,乌日娜. 甘氨酸喷施下Cd对川麦28生理生化过程的影响. 华北农学报. 2024(S1): 63-71 .
    5. 刘冬杰,肖波,曹秀珑. 微生物菌剂对草坪草抗寒性的研究进展. 草学. 2023(01): 11-14 .
    6. 何海鹏,南丽丽,马彪,夏静,姚宇恒,陈洁,汪堃. 红豆草种质苗期耐寒性筛选及评价. 中国草地学报. 2023(05): 41-49 .
    7. 廖浩钦,谢文刚. 牧草应对低温胁迫机制研究进展. 中国草地学报. 2023(12): 99-111 .
    8. 王明莹. 不同品种苜蓿对低温胁迫的生理响应及抗寒性评价. 呼伦贝尔学院学报. 2022(03): 84-88+128 .

    Other cited types(9)

Catalog

    Article views (82) PDF downloads (20) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return