• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
HAN Jing, WU Yi, ZHAO Lin, AI Yun-bi, LIU Yan, GAO Rong-fu. Effects of photoperiod on the growth, flowering and chlorophyll fluorescence kinetics of forced Paeonia lactiflora.[J]. Journal of Beijing Forestry University, 2015, 37(9): 62-69. DOI: 10.13332/j.1000-1522.20140418
Citation: HAN Jing, WU Yi, ZHAO Lin, AI Yun-bi, LIU Yan, GAO Rong-fu. Effects of photoperiod on the growth, flowering and chlorophyll fluorescence kinetics of forced Paeonia lactiflora.[J]. Journal of Beijing Forestry University, 2015, 37(9): 62-69. DOI: 10.13332/j.1000-1522.20140418

Effects of photoperiod on the growth, flowering and chlorophyll fluorescence kinetics of forced Paeonia lactiflora.

More Information
  • Received Date: November 16, 2014
  • Published Date: September 29, 2015
  • The objective of this study was to investigate the effects of photoperiods on the growth, flowering and photosynthetic mechanisms of forced Paeonia lactiflora. Two forced P. lactiflora cultivars Da Fu Gui (DFG) and Tao Hua Fei Xue (THFX) were treated with 3 different photoperiods: 14 h/d, 18 h/d and 9 h/d as control (CK). The results showed that: Compared with CK, 14 h/d photoperiod promoted the growth, chlorophyll accumulation and flowering of both cultivars, gradually increased maximum quantum efficiency of PSⅡ (Fv/Fm) and electron supply of PSⅡ to PSⅠ, and a new equilibrium of electron transport between PSⅡ-PSⅠ-carbon assimilation could be quickly reached. In comparison with CK, 18 h/d photoperiod was disadvantageous for the shoot elongation and significantly inhibited the flowering of DFG. In addition, 18 h/d photoperiod negatively affected electron transport chain at PSI, and broke the balance between PSI-carbon assimilation for both cultivars. The photosynthetic electron transport chain of two P. lactiflora cultivars responded differently to photoperiods. DFG had higher electron transport activity than THFX, and under 14 h/d photoperiod, dynamic changes of PSⅡ-PSI-carbon assimilation of DFG could reach a new dynamic equilibrium faster than THFX and keep the balance, therefore, DFG had a stronger photoperiod adaptability than THFX.
  • [1]
    QING K J. Herbaceous peony[M]. Beijing: China Forestry Publish House, 2004: 37-40, 87-89.
    [1]
    秦魁杰. 芍药[M]. 北京: 中国林业出版社, 2004: 37-40, 87-89.
    [2]
    周逸龄. 芍药花芽分化与需冷量研究[D]. 北京: 北京林业大学, 2012: 10-26,46-53.
    [3]
    ZHOU Y L. Floral development and chilling requirements of Paeonia lactiflora cultivars [D]. Beijing: Beijing Forestry University, 2012: 10-26,46-53.
    [4]
    AOKI N. Effect of chilling period on the growth and cut-flower quality of forced herbaceous peony[J]. Bulletin of the Faculty of Agriculture Shimane University, 1991, 25: 149-154.
    [5]
    KAMENETSKY R, BARZILAY A, EREZ A, et al. Temperature requirements for flora development of herbaceous peony cv. Sarah Bernhard [J]. Scientia Horticulture, 2003, 97: 309-320.
    [6]
    GAO J Z, GAO R F, SHEN Y B, et al. Solar-heated greenhouse condition affects the flower productivity, photosynthesis and chlorophyll content of herbaceous peony[J]. Journal of Food, Agriculture Environment, 2012, 10: 1457-1463.
    [7]
    牛立军. 芍药切花露地及设施生产栽培技术研究[D]. 北京: 北京林业大学, 2010: 22-34, 108-115.
    [8]
    NIU L J. Study on the production technology of cut herb peony in Open land and greenhouse [D]. Beijing: Beijing Forestry University, 2010: 22-34, 108-115.
    [9]
    成仿云, 张文娟, 于晓南, 等. 赤霉素及生根粉对芍药促成栽培的影响[J]. 园艺学报, 2005, 32(6): 1129-1132.
    [10]
    CHENG F Y, ZHANG W J, YU X N, et al. Effects of Gibberellin and rooting powder on the forcing culture of Paeonia lactiflora Da Fugui [J]. Acta Horticulturae Sinica, 2005: 32(6): 1129-1132.
    [11]
    HALDA J J. The genus paeonia [M]. Cambridge, Timber Press, 2004: 177-178.
    [12]
    郁书君, 杨玉勇, 余树勋. 芍药与牡丹[M]. 北京: 中国农业出版社, 2006:105, 114.
    [13]
    YU S J, YANG Y Y, YU S X. Herbaceous and tree peony[M]. Beijing: China Agriculture Press, 2006:105, 114.
    [14]
    NIU L, HAN J, LIU Y. The effect of different illumination length on growth and the quality of cut herbaceous peony flower[C]∥Proceedings of 28th International Horticultural Congress. Lisboa: International Society for Horticultural Science, 2010:424.
    [15]
    费菲. 春节期间生产芍药切花促成栽培技术[J]. 南方农业:园林花卉版, 2008(3): 68-69.
    [16]
    FEI F. Technology of cut Paeonia lactiflora cultivation in Spring Festival period [J]. South China Agriculture, 2008(3): 68-69.
    [17]
    解孝满. 菏泽芍药品种资源调查及盆栽促成栽培技术的研究[D]. 南京: 南京林业大学, 2005: 35.
    [18]
    XIE X M. Research on the resources and pot-facilitating culivation of Paeonia lactiflora in Heze [D]. Nanjing: Nanjing Forestry University, 2005: 35.
    [19]
    刘继国, 田振龙. 芍药春节催花栽培技术[J]. 山东林业科技, 2005(5): 48.
    [20]
    LIU J G, TIAN Z L. Herbaceous peony forcing cultivation technology in Spring Festival period [J]. Shandong Forestry Science and Technology, 2005(5): 48.
    [21]
    周生地, 赵孝庆. 芍药在北方的冬季促成栽培[J]. 园林, 2002, (11): 28-29.
    [22]
    ZHOU S D, ZHAO X Q. Winter forcing cultivation of herbaceous peony in North China [J]. Garden, 2002, (11): 28-29.
    [23]
    ZHONG C F, WU X, GAO Z, et al. Study on post-steady-state chlorophyll a fluorescence kinetics of plants [M]∥KANG T Y, LU C M, ZHANG L X. Photosynthesis research for food, fuel and the future. Hangzhou: Zhejiang University Press, 2013, 290-293.
    [24]
    钟传飞. 稳态叶绿素荧光动力学理论构建和常绿阔叶植物越冬光合生理生态研究[D]. 北京: 北京林业大学, 2008: 1-36.
    [25]
    ZHONG C F. Establisment of steady-state cholorophyll a fluorescence kinetics and photosynthesis of overwintering evergreen broad-leaf plant [D]. Beijing: Beijing Forestry University, 2008: 1-36.
    [26]
    钟传飞, 张运涛, 姚洪军, 等. 金叶女贞遮阴复绿过程中光系统Ⅱ功能转变研究[J]. 北京林业大学学报, 2012, 33(6): 35-39.
    [27]
    ZHONG C F, ZHANG Y T, YAO H J, et al. Transformation of photosystem Ⅱ function during greening in golden leaves of ligustrum vicaryi[J]. Journal of Beijing Forestry University, 2012, 33(6): 35-39.
    [28]
    彭金根, 刘燕, 郭翎, 等. 越冬返青期间小叶黄杨叶色与叶绿素荧光动力学变化[J]. 北京林业大学学报, 2011, 33(6): 27-32.
    [29]
    PENG J J, LIU Y, GUO L, et al. Color change and chlorophyll fluorescence kinetics characteristics of Buxus microphylla leaves during the period of overwintering and regreening [J]. Journal of Beijing Forestry University, 2011, 33(6): 27-32.
    [30]
    高健洲. 芍药设施栽培品种筛选指标和评价方法研究[D]. 北京: 北京林业大学, 2013: 31-43.
    [31]
    GAO J Z. Scanning index and evaluation method of herbaceous peony cultivars under protected cultivation condition[D]. Beijing: Beijing Forestry University, 2013: 31-43.
    [32]
    SCHREIBER U. Detection of rapid induction kinetics with a new type of high-frequency modulated chlo-rophll fluorometer[J]. Photosynthetic Research, 1986, 9: 261-272.
    [33]
    SCHREIBER U, ENDO T, HUALING M, et al. Quenching analysis of chlorophyll fluorescence by the saturation pulse method: particular aspects relating to study of eukaryotic algae and cyanobacteria [J]. Plant Cell Physiology, 1995, 36: 873-882.
    [34]
    BUTLER W L. Energy distribution in the photochemical apparatus of photosynthesis [J]. Annual Reviews of Plant Physiology, 1978, 29: 345-378.
    [35]
    GENTY B, BRIANTAIS J M, BAKER N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence [J]. Biochimica et Biophysica Acta, 1989, 990(1): 87-92.
    [36]
    KRAMER D M, JOHNSON G, KIIRATS O, et al. New fluorescence parameters for determination of QA redox state and excitation energy fluxes [J]. Photosynthesis Research, 2004, 79: 209-218.
    [37]
    BILGER W, BJORKMAN O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis.[J]. Photosynthesis Research, 1990, 25(3): 173-185.
    [38]
    BAKER N R. Chlorophyll fluorescence: a probe of photosynthesis in vivo [J]. Annual Reviews of Plant Biology, 2008, 59: 89-113.
    [39]
    李冬梅, 谭秋平, 高东升, 等. 光周期对休眠桃树光合及PSⅡ光系统性能的影响[J]. 应用生态学报, 2014, 25(7):1933-1939.
    [40]
    LI D M, TAN Q P, GAO D S, et al. Effects of photopeiod on photosynthesis and PSⅡ performance in peach during dormancy induction [J]. Chinese Journal of Applied Ecology, 2014, 25(7):1933-1939.
    [41]
    张子山, 杨程, 高远辉. 植物光系统Ⅰ的低温光抑制及恢复[J]. 植物生理学报, 2013, 49(4):301-308.
    [42]
    ZHANG Z S, YANG C, GAO Y H. Chilling photoinhibition of photosytem Ⅰ and its recovery after photoinhibition [J]. Plant Physiology Journal, 2013, 49(4):301-308.
    [43]
    马丽茹. 设施栽培方式下芍药不同品种光合特性研究[D]. 北京: 北京林业大学, 2012: 24-60.
    [44]
    MA L R. Studies on photosynthetic characteristics of Paeonia lactiflora cultivars under greenhouse cultivation mode [D]. Beijing: Beijing Forestry University, 2012: 24-60.
    [45]
    PARK Y I, CHOW W S, ANDERSON J M. Light inaetivation of funetional photosystem in leaves of pears grown in moderate light depends on photon exposure [J]. Planta, 1995, 196:401-411.
    [46]
    BJORKMAN O. Low-temperature chlorophyll fluorescence in leaves and its relationship to photon yield of photosynthesis in photoinhibition[M]∥KYLE D J, AMTZEN C J, OSMOND C B, et al. Photoinhibition. Amsterdam: Elsevier, 1987:123-144.
  • Related Articles

    [1]Huang Xin, Xu Guoqi, Ma Yaohui. Developing a wood preservative based on boron doping Ginkgo biloba leaf carbon quantum dots with fluorescent tracer function[J]. Journal of Beijing Forestry University, 2025, 47(1): 116-125. DOI: 10.12171/j.1000-1522.20240329
    [2]He Xiao, Li Haikui, Zhang Yiru, Huang Jinjin. Growth model of carbon storage and driving force of carbon sequestration capacity of natural secondary forests[J]. Journal of Beijing Forestry University, 2023, 45(1): 1-10. DOI: 10.12171/j.1000-1522.20210265
    [3]Zhang Jingru, Tong Xiaojuan, Meng Ping, Zhang Jinsong, Liu Peirong. Comparative study on phenology in a mountainous plantation in northern China based on vegetation index, chlorophyll fluorescence and carbon flux[J]. Journal of Beijing Forestry University, 2020, 42(11): 17-26. DOI: 10.12171/j.1000-1522.20200113
    [4]YANG Bo-wen, SUN Hai-long, WU Chu. Effects of phosphorus stress on photosynthesis and nitrogen assimilation of Fraxinus mandshurica seedlings[J]. Journal of Beijing Forestry University, 2015, 37(8): 18-23. DOI: 10.13332/j.1000-1522.20140417
    [5]REN Jian-wu, WANG Xing-zhi, YANG Li-na, GAO Rong-fu. Comprehensive linkage among chlorophyll fluorescence, carbon assimilation and stomatal movement of three dendrobia.[J]. Journal of Beijing Forestry University, 2011, 33(6): 166-172.
    [6]PENG Jin-gen, LIU Yan, GUO Ling, GAO Rong-fu. Color change and chlorophyll fluorescence kinetics characteristics of Buxus microphylla leaves during the period of overwintering and regreening.[J]. Journal of Beijing Forestry University, 2011, 33(6): 27-34.
    [7]QIAN Yong-qiang, ZHOU Xiao-xing, HAN Lei, SUN Zhen-yuan, JU Guan-sheng. Rapid light-response curves of PSⅡ chlorophyll fluorescence parameters in the leaves of Salix babylonica, Salix ‘J172’ and Salix leucopithecia to Cd2+ stress[J]. Journal of Beijing Forestry University, 2011, 33(6): 8-14.
    [8]ZHANG Yun, CUI Xiao-yang. Nitrogen absorption and assimilation characteristics of Pinus koraiensis seedings in different NH+4/NO-3 ratios[J]. Journal of Beijing Forestry University, 2011, 33(5): 61-64.
    [9]ZHONG Chuan-fei, , WU Xiao-ying, YAO Hong-jun, SHI Zheng, GAO Rong-fu. Characteristics of chlorophyll a fluorescence kinetics of Euonymus japonicus during early spring in Beijing region.[J]. Journal of Beijing Forestry University, 2008, 30(6): 9-15.
    [10]OUYANG Jie, WU Yan-wen, WANG Xiao-dong, ZHAO Bing, WANG Yu-chun. Kinetics of Cistanche deserticola cells in suspension culture[J]. Journal of Beijing Forestry University, 2007, 29(5): 132-136. DOI: 10.13332/j.1000-1522.2007.05.024
  • Cited by

    Periodical cited type(14)

    1. 潘艳花,王卫成,汤玲,唐小刚,任家玄. 芍药花芽分化及花期调控研究进展. 寒旱农业科学. 2024(02): 109-116 .
    2. 李菲,王司琦,赵艳莉,苗润田,黄淦,李永华. 高温胁迫下不同耐热性切花菊光化学活性和能量分配差异. 植物生理学报. 2024(03): 549-560 .
    3. 董从国,顾嵩,赵忠磊,周保国,董金刚,张明春. 栽培密度对促成栽培切花芍药性状及品质的影响. 山东林业科技. 2023(06): 79-84 .
    4. 荆庆芳,朱林,兰艳,张杨,程云龙. 两种稗属牧草生长生理指标对光周期变化的响应. 中国农业气象. 2022(12): 1025-1034 .
    5. 冯晨昱,王丹丹,解静,丁义峰. 甘露醇和苯甲酸钠对芍药花瓣生理代谢的影响. 现代农业科技. 2021(07): 122-124+130 .
    6. 王小雷,邹聪聪,孙序磊,刘琳. 促成栽培对芍药生长开花的影响. 农业开发与装备. 2021(10): 177-178 .
    7. 李健,韩晨静,王琦,马协乐,余晓丛. 温湿度调控对芍药花期的影响. 山东农业科学. 2021(12): 74-77 .
    8. 靳川,查天山,贾昕,田赟,周文君,杨双宝,郭子繁. 干旱环境3种荒漠灌木叶绿素荧光参数动态. 北京林业大学学报. 2020(08): 72-80 . 本站查看
    9. 田军,孙信成,康杰,詹远华,张忠武,杨连勇,彭元群,陈位平. 不同光照时长对长豇豆品种光敏性的影响. 长江蔬菜. 2020(20): 59-62 .
    10. 陈永快,王涛,兰婕,黄语燕,康育鑫. 植物工厂内LED光调控在作物栽培中的研究进展. 江苏农业科学. 2020(23): 40-46 .
    11. 刘杰,胡笑涛,王文娥,冉辉,方舒玲,杨鑫. 光强和光周期对水培生菜光合及叶绿素荧光特性的影响. 西南农业学报. 2019(08): 1784-1790 .
    12. 邢阿宝,崔海峰,俞晓平,张雅芬,叶子弘. 光质及光周期对植物生长发育的影响. 北方园艺. 2018(03): 163-172 .
    13. 孙昕,何飞飞,李鹏飞,汤加刚. 光照周期性波动对铜绿微囊藻(Microcystis aeruginosa)和斜生栅藻(Scenedesmus obliquus)生长的抑制. 湖泊科学. 2018(05): 1309-1318 .
    14. 姜楠南,吴晓星,王翠香,孙音,卢洁,王玮,房义福. 芍药周年供花技术研究综述. 林业与环境科学. 2017(04): 135-138 .

    Other cited types(30)

Catalog

    Article views (1688) PDF downloads (27) Cited by(44)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return