• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
GUO Xiao-nan, ZHA Tian-shan, JIA Xin, YANG Qiang, MU Jia-wei, LIU Peng, .. Estimation of dewfall amount in a typical desert shrub ecosystem.[J]. Journal of Beijing Forestry University, 2016, 38(10): 80-87. DOI: 10.13332/j.1000-1522.20160017
Citation: GUO Xiao-nan, ZHA Tian-shan, JIA Xin, YANG Qiang, MU Jia-wei, LIU Peng, .. Estimation of dewfall amount in a typical desert shrub ecosystem.[J]. Journal of Beijing Forestry University, 2016, 38(10): 80-87. DOI: 10.13332/j.1000-1522.20160017

Estimation of dewfall amount in a typical desert shrub ecosystem.

More Information
  • Received Date: January 14, 2016
  • Published Date: October 28, 2016
  • Estimation of dewfall amount and its interannual variation in arid and semi-arid transitional ecosystems are still limited. Microlysimeter, eddy covariance (EC) method and Penman-Monteith equation were used to calculate the dewfall amount in a desert shrub ecosystem in Yanchi Research Station, Ningxia, Northwest China. The objectives of this study were to explore the accuracy of EC and Penman-Monteith equation in dewfall estimation, to analyze the seasonal and interannual variations of dewfall amount, the contribution of dewfall amount to the water balance of the ecosystem and the influence of rainfall on dewfall. The results indicated that: 1) taking the results observed by microlysimeter as a control, EC method could lead to a substantial underestimation of dewfall amount because of its low energy closure at night, but the Penman-Monteith equation could precisely estimate dewfall amount (R2 = 0.94, P0.05). 2) Dewfall amount during 2012—2014 was estimated by the Penman-Monteith equation. Mean daily dewfall amount (during 2012—2014) was 0.14±0.08 mm, average number of dewfall days was 259 days per year, dewfall amount in the years 2012 to 2014 was 46, 33 and 29 mm, respectively. Dewfall occurred more frequently in summer and autumn. The average annual rainfall amount during 2012—2014 was 301 mm. The average annual dewfall amount accounted for 12% of the average annual rainfall. 3) Rainfall and the dewfall amount on the day after rainfall showed a significant positive relationship (R2=0.81, P0.05). The percentage of ≥20 mm rainfall events accounted for 10%, 5% and 3% of the yearly total rainfall events in the years 2012 to 2014, respectively. Rainfall larger than 20 mm could add more water vapor in the air, thus increasing dewfall amount. Thereafter the percentage of ≥20 mm rainfall events to the yearly total rainfall events would significantly influence the annual dewfall amount. The results prove that dewfall is an important and stable water resource to maintain the function of desert ecosystem system despite of its large interannual differences and relatively small percentage in rainfall.
  • [1]
    PAN Y X, WANG X P, ZHANG Y F, et al. Influence of topography on formation characteristics of hygroscopic and condensatewater in Shapotou, Ningxia, China[J]. Journal of Desert Research, 2014, 34(1): 118-124.
    [1]
    潘颜霞, 王新平, 张亚峰, 等. 沙坡头地区地形对凝结水形成特征的影响[J]. 中国沙漠, 2014, 34(1): 118-124.
    [2]
    ZHUANG Y L, RATCLIFFE S. Relationship between dew presence and Bassia dasyphylla plant growth[J]. Journal of Arid Land, 2012, 4(1): 11-18.
    [2]
    ZHUANG Y L, ZHAO W Z. Experimental study of effects of artificial dew on Bassia dasyphylla and Agriophylum squarrosum[J]. Journal of Desert Research, 2010, 30(5):1068-1074.
    [3]
    LIU X D, ZHANG K B, WANG L L, et al. How enclosure affects community characteristics of the sandy grassland in semi-arid areas of northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(2):48-54.
    [3]
    EVENARI M,SHANAN L,TADMOR N. The Negev: challenge of a desert[M]. Cambridge:Harvard University Press,1971.
    [4]
    LI X M, ZHANG Q L. Impact of climate factors on CO2 flux characteristic in a Larix gmelinii forest ecosystem[J]. Journal of Beijing Forestry University, 2015, 37(8):31-39.
    [4]
    NINARI N,BERLINER P R. The role of dew in the water and heat balance of bare loess soil in the Negev Desert:quantifying the actual dew deposition on the soil surface[J]. Atmospheric Research, 2002, 64(1-4): 323-334.
    [5]
    YANG Q, ZHA T S, JIA X, et al. Rainfall effects on the sap flow of Hedysarum scoparium[J]. Chinese Journal of Applied Ecology, 2016, 27(3):761-768.
    [5]
    BENYENS D.The formation of dew[J]. Atmospheric Research, 1995, 39(1-3): 215-237.
    [6]
    DUVDEVANI S. An optical method of dew estimation[J]. Quarterly Journal of the Royal Meteorological Society, 1947, 73: 282-296.
    [7]
    庄艳丽, 赵文智. 荒漠植物雾冰藜和沙米叶片对凝结水响应的模拟实验[J]. 中国沙漠, 2010, 30(5):1068-1074.
    [8]
    JACOBS A F G, HEUSINKVELD B G, WICHINK KRUIT R J, et al. Contribution of dew to the water budget of a grassland area in the netherlands[J/OL]. Water Resources Research, 2006, 42(3)[2016-01-22]. DOI: 10.1029/2005WR004055.
    [9]
    MORO M J, WERE A, VILLAGARCA L, et al. Dew measurement by eddy covariance and wetness sensor in a semiarid ecosystem of SE Spain[J]. Journal of Hydrology, 2007, 335(3): 295-302.
    [10]
    UCLS O, VILLAGARCA L, MORO M, et al. Role of dewfall in the water balance of a semiarid coastal steppe ecosystem[J]. Hydrological Processes, 2014, 28(4): 2271-2280.
    [11]
    刘小丹, 张克斌, 王黎黎, 等. 封育对半干旱区沙化草地群落特征的影响[J]. 北京林业大学学报, 2015, 37(2): 48-54.
    [12]
    ZHA T S, BARR A G, BLACK T A, et al. Carbon sequestration in boreal jack pine stands following harvesting[J]. Global Change Biology, 2009, 15(6):1475-1487.
    [13]
    ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration: guidelines for computing crop water requirements (FAO irrigation and drainage paper 56)[M]. Rome: FAO, 1998: 300.
    [14]
    CAMPBELL G S, NORMAN J M. An introduction to environmental biophysics[M]. New York: Springer Science Business Media,1998.
    [15]
    LAWRENCE M G. The relationship between relative humidity and the dewpoint temperature in moist air:a simple conversion and applications[J]. Bulletin of the American Meteorological Society, 2005, 86(2): 225-233.
    [16]
    FALGE E, BALDOCCHI D, OLSON R, et al. Gap filling strategies for long term energy flux data sets[J]. Agricultural Forest Meteorology, 2001, 107(1): 71-77.
    [17]
    李小梅, 张秋良. 环境因子对兴安落叶松林生态系统CO2 通量的影响[J]. 北京林业大学学报, 2015, 37(8): 31-39.
    [18]
    LEE X H. On micrometeorological observations of surface-air exchange over tall vegetation[J]. Agricultural Forest Meteorology, 1998, 91(1-2): 39-49.
    [19]
    KELLIHER F M, HOLLINGER D, SCHULZE E D, et al. Evaporation from an eastern Siberian larch forest[J]. Agricultural and Forest Meteorology, 1997, 85(3-4): 135-147.
    [20]
    YE Y H, ZHOU K, SONG L Y, et al. Dew amounts and its correlations with meteorological factors in urban landscapes of Guangzhou, China[J]. Atmospheric Research, 2007, 86(1):21-29.
    [21]
    RICHARDS K. Observation and simulation of dew in rural and urban environments[J]. Progress in Physical Geography, 2004, 28(1): 76-94.
    [22]
    ZHA T S, BARR A G, KAMP G V D, et al. Interannual variation in evapotranspiration from forest and grassland ecosystems in western Canada in relation to drought[J]. Agricultural and Forest Meteorology, 2010, 150(11):1476-1484.
    [23]
    UCLS O M, MORO M J, VILLAGARCA L, et al. Is dewfall an important source of water in semiarid coastal steppe ecosystems in SE Spain?[C]∥5th International Conference on Fog. Münster: Fog Collection and Dew, 2010.
    [24]
    LEKOUCH I, MUSELLI M, KABBACHI B, et al. Dew, fog, and rain as supplementary sources of water in south-western Morocco[J]. Energy, 2011,36(4): 2257-2265.
    [25]
    SUBRAMANIAM A R, KESAVARAO A V R. Dew fall in sand dune areas of India[J]. International Journal of Biometeorology, 1983, 27(3): 271-280.
    [26]
    HAO X M, LI C, GUO B,et al. Dew formation and its long-term trend in a desert riparian forest ecosystem on the eastern edge of the Taklimakan Desert in China[J]. Journal of Hydrology, 2012, 472-473(5):90-98.
    [27]
    PAN Y X, WANG X P, ZHANG Y F. Dew formation characteristics in a revegetation-stabilized desert ecosystem in Shapotou area, Northern China[J]. Journal of Hydrology, 2010, 387(3): 265-272.
    [28]
    HE S Y, RECHARDS K. The role of dew in the monsoon season assessed via stable isotopes in an alpine meadow in Northern Tibet[J]. Atmospheric Research, 2015, 151:101-109.
    [29]
    SALAU O A, LAWSON T L. Dewfall features of a tropical station: the case of Onne (Port Hartcourt), Nigeria[J]. Theoretical and Applied Climatology, 1986, 37(4): 233-240.
    [30]
    杨强,查天山,贾昕,等. 花棒茎流对降雨的响应[J].应用生态学报, 2016, 27(3):761-768.
  • Related Articles

    [1]Guan Zhuizhui, Zhang Yandong. Spatial and temporal distribution characteristics and discoloration law of Fraxinus mandshurica knot[J]. Journal of Beijing Forestry University, 2020, 42(8): 53-60. DOI: 10.12171/j.1000-1522.20200004
    [2]Yao Jie, Song Zilong, Zhang Chunyu, Meng Lingjun, Zhao Xiuhai. Effects of distance and density dependence on seedling growth in a broadleaved Korean pine forest in Jiaohe of Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(5): 108-117. DOI: 10.13332/j.1000-1522.20190027
    [3]Wu Zhaofei, Zhang Yuqiu, Zhang Zhonghui, He Huaijiang, Zhang Chunyu, Zhao Xiuhai. Study on the relationship between forest structure and productivity of temperate forests in Northeast China[J]. Journal of Beijing Forestry University, 2019, 41(5): 48-55. DOI: 10.13332/j.1000-1522.20190017
    [4]Tao Changsen, Niu Shukui, Chen Ling, Li Lianqiang. Canopy characteristics and potential crown fire behavior of main coniferous forest in Miaofeng Mountain Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2018, 40(5): 82-89. DOI: 10.13332/j.1000-1522.20170408
    [5]LOU Xin, GU Yan, ZHANG Jun-hui, HAN Shi-jie. Effects of snow cover and freeze-thaw cycles on stability of surface soil aggregates in forest[J]. Journal of Beijing Forestry University, 2016, 38(4): 63-70. DOI: 10.13332/j.1000-1522.20150435
    [6]LIU Yan-hong, MA Wei.. Carbon distribution and combustibility of fuels in Larix olgensis plantations.[J]. Journal of Beijing Forestry University, 2013, 35(3): 32-38.
    [7]JIANG Ping, YE Ji, WANG Shao-xian, , FENG Xiu-chun, HUANG Xiang-tong, NIU Li-jun, WU Gang. Vertical distribution of floristic composition, community structure and biodiversity of forest communities along altitudinal gradients on south slope of the Changbai Mountain, northeastern China.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 258-262.
    [8]CAO Wei, LI Yuanyuan. Vertical pattern of flora from Changbai Mountain, China.[J]. Journal of Beijing Forestry University, 2008, 30(4): 53-58.
    [9]WU Jia-bing, GUAN De-xin, ZHANG Mi, HAN Shi-jie, YU Gui-rui, SUN Xiao-min. Carbon budget characteristics of the broadleaved Korean pine forests in Changbaishan Mountains[J]. Journal of Beijing Forestry University, 2007, 29(1): 1-6. DOI: 10.13332/j.1000-1522.2007.01.001
    [10]YANG Li-yun, LI Wen-hua. Fine root distribution and turnover in a broad-leaved and Korean pine climax forest of the Changbai Mountain in China[J]. Journal of Beijing Forestry University, 2005, 27(2): 1-5.
  • Cited by

    Periodical cited type(1)

    1. 王雯倩,蔡玉山,肖湘,段亮亮. 老爷岭多年冻土小流域春季冻融期径流溶解性有机碳变化特征. 生态学报. 2023(16): 6716-6727 .

    Other cited types(1)

Catalog

    Article views (2173) PDF downloads (39) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return