Citation: | Yu Huiling, Ma Junwei, Zhang Yizhuo. Plant leaf recognition model based on two-way convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(12): 132-137. DOI: 10.13332/j.1000-1522.20180182 |
[1] |
魏蕾, 何东健, 乔永亮.基于图像处理和SVM的植物叶片分类研究[J].农机化研究, 2013, 35(5): 12-15. doi: 10.3969/j.issn.1003-188X.2013.05.003
Wei L, He D J, Qiao Y L. Plant leaves classification based on image processing and SVM[J]. Journal of Agricultural Mechanization Research, 2013, 35(5):12-15. doi: 10.3969/j.issn.1003-188X.2013.05.003
|
[2] |
张宁, 刘文萍.基于克隆选择算法和K近邻的植物叶片识别方法[J].计算机应用, 2013, 33(7): 2009-2013. doi: 10.11772/j.issn.1001-9081.2013.07.2009
Zhang N, Liu W P. Plant leaf recognition method based on clonal selection algorithm and K nearest neighbor[J]. Journal of Computer Applications, 2013, 33(7): 2009-2013. doi: 10.11772/j.issn.1001-9081.2013.07.2009
|
[3] |
王丽君, 淮永建, 彭月橙.基于叶片图像多特征融合的观叶植物种类识别[J].北京林业大学学报, 2015, 37(1):55-61. doi: 10.13332/j.cnki.jbfu.2015.01.006
Wang L J, Huai Y J, Peng Y C. Method of identification of foliage from plants based on extraction of multiple features of leaf images[J]. Journal of Beijing Forestry University, 2015, 37(1): 55-61. doi: 10.13332/j.cnki.jbfu.2015.01.006
|
[4] |
杨天天, 潘晓星, 穆立蔷.基于叶片图像特征数字化信息识别7种柳属植物[J].东北林业大学学报, 2014, 42(12):75-79. doi: 10.3969/j.issn.1000-5382.2014.12.016
Yang T T, Pan X X, Mu L Q. Identification of seven Salix species using digital information analysis of leaf image characteristics[J]. Journal of Northeast Forestry University, 2014, 42(12):75-79. doi: 10.3969/j.issn.1000-5382.2014.12.016
|
[5] |
张帅, 淮永建.基于分层卷积深度学习系统的植物叶片识别研究[J].北京林业大学学报, 2016, 38(9):108-115. doi: 10.13332/j.1000-1522.20160035
Zhang S, Huai Y J. Leaf image recognition based on layered convolutions neural network deep learning[J]. Journal of Beijing Forestry University, 2016, 38(9):108-115. doi: 10.13332/j.1000-1522.20160035
|
[6] |
Lee S H, Chan C S, Wilkin P, et al. Deep-plant: plant identification with convolutional neural networks[C]//Proceedings of 2015 IEEE International Conference on Image Processing (ICIP). Quebec: IEEE, 2015: 452-456.
|
[7] |
Wu S G, Bao F S, Xu E Y, et al. A leaf recognition algorithm for plant classification using PNN (probabilistic neural network)[C/OL]//Proceedings of 2007 IEEE International Symposium on Signal Processing and Information Technology. New York: IEEE, 2007[2018-02-27]. https://ieeexplore.ieee.org/document/4458016.
|
[8] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe: ACM, 2012: 1097-1105.
|
[9] |
卢宏涛, 张秦川.深度卷积神经网络在计算机视觉中的应用研究综述[J].数据采集与处理, 2016, 31(1):1-17. http://d.old.wanfangdata.com.cn/Periodical/sjcjycl201601001
Lu H T, Zhang Q C. Applications of deep convolutional neural network in computer vision[J]. Journal of Data Acquisition and Processing, 2016, 31(1):1-17. http://d.old.wanfangdata.com.cn/Periodical/sjcjycl201601001
|
[10] |
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
|
[11] |
Bouvrie J. Notes on convolutional neural networks[EB/OL]. (2006-11-22)[2015-10-11]. http://cogprints.org/5869/1/cnn_tutorial.pdf.
|
[1] | Zhang Yu, Gao Yayue, Chang Fengyuan, Xie Jiangjian, Zhang Junguo. Panthera unica recognition based on data expansion and ResNeSt with few samples[J]. Journal of Beijing Forestry University, 2021, 43(10): 89-99. DOI: 10.12171/j.1000-1522.20210185 |
[2] | Li Yanfu, Fan Xijian, Yang Xubing, Xu Xinzhou. Remote sensing image classification framework based on self-attention convolutional neural network[J]. Journal of Beijing Forestry University, 2021, 43(10): 81-88. DOI: 10.12171/j.1000-1522.20210196 |
[3] | Liu Jiazheng, Wang Xuefeng, Wang Tian. Image recognition of tree species based on multi feature fusion and CNN model[J]. Journal of Beijing Forestry University, 2019, 41(11): 76-86. DOI: 10.13332/j.1000-1522.20180366 |
[4] | Jiang Tao, Wang Xinjie. Convolutional neural network for GF-2 image stand type classification[J]. Journal of Beijing Forestry University, 2019, 41(9): 20-29. DOI: 10.13332/j.1000-1522.20180342 |
[5] | Liu Jiazheng, Wang Xuefeng, Wang Tian. Research on image recognition of five bark texture images based on deep learning[J]. Journal of Beijing Forestry University, 2019, 41(4): 146-154. DOI: 10.13332/j.1000-1522.20180242 |
[6] | Hu Jing, Chen Zhibo, Yang Meng, Zhang Rongguo, Cui Yaji. Plant leaf segmentation method based on fully convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(11): 131-136. DOI: 10.13332/j.1000-1522.20180007 |
[7] | Liu Wending, Li Anqi, Zhang Junguo, Xie Jiangjian, Bao Weidong. Automatic identification method for terrestrial wildlife in Saihanwula National Nature Reserve in Inner Mongolia of northern China based on ROI-CNN[J]. Journal of Beijing Forestry University, 2018, 40(8): 123-131. DOI: 10.13332/j.1000-1522.20180141 |
[8] | ZHANG Shuai, HUAI Yong-jian.. Leaf image recognition based on layered convolutions neural network deep learning.[J]. Journal of Beijing Forestry University, 2016, 38(9): 108-115. DOI: 10.13332/j.1000-1522.20160035 |
[9] | LIU Nian, KAN Jiang-ming. Plant leaf identification based on the multi-feature fusion and deep belief networks method[J]. Journal of Beijing Forestry University, 2016, 38(3): 110-119. DOI: 10.13332/j.1000-1522.20150267 |
[10] | HUANG Jia-rong, GAO Guang-qin, MENG Xian-yu, GUAN Yu-xiu. Forecasting stand diameter distribution based on artificial neural network.[J]. Journal of Beijing Forestry University, 2010, 32(3): 21-26. |