• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yu Huiling, Ma Junwei, Zhang Yizhuo. Plant leaf recognition model based on two-way convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(12): 132-137. DOI: 10.13332/j.1000-1522.20180182
Citation: Yu Huiling, Ma Junwei, Zhang Yizhuo. Plant leaf recognition model based on two-way convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(12): 132-137. DOI: 10.13332/j.1000-1522.20180182

Plant leaf recognition model based on two-way convolutional neural network

More Information
  • Received Date: May 29, 2018
  • Revised Date: October 21, 2018
  • Published Date: November 30, 2018
  • ObjectiveAiming at the problem that the leaf edge shape has an excessive effect on the convolution layer during the process of identifying the leaf of convolutional neural network, which leads to the error recognition of similar edge shape leaves, a plant leaf recognition model of two-way convolutional neural network was proposed.
    MethodThe model considers the edge shape and internal texture features of the blade information to construct a two-way convolutional neural network structure. Wherein, the shape feature path used a network structure of 7 layers of convolution layers, the first three layers used large-size 11×11 and 5×5 convolution kernels, extracting large field of view features to complete blade shape feature extraction, the other 4 layers of convolution layer used a 3×3 small size convolution core, extracting blade detail features. The two types of feature linear transformations were merged into one-dimensional feature vectors through a fully connected layer. Finally, the fully connected layer identified the plant leaf species.
    ResultThe experimental results showed that the two-way convolutional network model was compared with the single-channel convolutional network and the image recognition classification recognition model. On the Flavia leaf dataset and the expanded complex background leaf dataset, the accuracy of Top-1 recognition increased to 99.28% and 97.31%, respectively. The accuracy of Top-3 recognition increased to 99.97% and 99.74%, respectively. The standard deviation decreased to 0.18 and 0.20 compared with other identification and classification models.
    ConclusionThe blade recognition and classification model proposed in this paper can effectively avoid the problems caused by the similar blade edge shape interference and improve the recognition accuracy of leaf plant species.
  • [1]
    魏蕾, 何东健, 乔永亮.基于图像处理和SVM的植物叶片分类研究[J].农机化研究, 2013, 35(5): 12-15. doi: 10.3969/j.issn.1003-188X.2013.05.003

    Wei L, He D J, Qiao Y L. Plant leaves classification based on image processing and SVM[J]. Journal of Agricultural Mechanization Research, 2013, 35(5):12-15. doi: 10.3969/j.issn.1003-188X.2013.05.003
    [2]
    张宁, 刘文萍.基于克隆选择算法和K近邻的植物叶片识别方法[J].计算机应用, 2013, 33(7): 2009-2013. doi: 10.11772/j.issn.1001-9081.2013.07.2009

    Zhang N, Liu W P. Plant leaf recognition method based on clonal selection algorithm and K nearest neighbor[J]. Journal of Computer Applications, 2013, 33(7): 2009-2013. doi: 10.11772/j.issn.1001-9081.2013.07.2009
    [3]
    王丽君, 淮永建, 彭月橙.基于叶片图像多特征融合的观叶植物种类识别[J].北京林业大学学报, 2015, 37(1):55-61. doi: 10.13332/j.cnki.jbfu.2015.01.006

    Wang L J, Huai Y J, Peng Y C. Method of identification of foliage from plants based on extraction of multiple features of leaf images[J]. Journal of Beijing Forestry University, 2015, 37(1): 55-61. doi: 10.13332/j.cnki.jbfu.2015.01.006
    [4]
    杨天天, 潘晓星, 穆立蔷.基于叶片图像特征数字化信息识别7种柳属植物[J].东北林业大学学报, 2014, 42(12):75-79. doi: 10.3969/j.issn.1000-5382.2014.12.016

    Yang T T, Pan X X, Mu L Q. Identification of seven Salix species using digital information analysis of leaf image characteristics[J]. Journal of Northeast Forestry University, 2014, 42(12):75-79. doi: 10.3969/j.issn.1000-5382.2014.12.016
    [5]
    张帅, 淮永建.基于分层卷积深度学习系统的植物叶片识别研究[J].北京林业大学学报, 2016, 38(9):108-115. doi: 10.13332/j.1000-1522.20160035

    Zhang S, Huai Y J. Leaf image recognition based on layered convolutions neural network deep learning[J]. Journal of Beijing Forestry University, 2016, 38(9):108-115. doi: 10.13332/j.1000-1522.20160035
    [6]
    Lee S H, Chan C S, Wilkin P, et al. Deep-plant: plant identification with convolutional neural networks[C]//Proceedings of 2015 IEEE International Conference on Image Processing (ICIP). Quebec: IEEE, 2015: 452-456.
    [7]
    Wu S G, Bao F S, Xu E Y, et al. A leaf recognition algorithm for plant classification using PNN (probabilistic neural network)[C/OL]//Proceedings of 2007 IEEE International Symposium on Signal Processing and Information Technology. New York: IEEE, 2007[2018-02-27]. https://ieeexplore.ieee.org/document/4458016.
    [8]
    Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe: ACM, 2012: 1097-1105.
    [9]
    卢宏涛, 张秦川.深度卷积神经网络在计算机视觉中的应用研究综述[J].数据采集与处理, 2016, 31(1):1-17. http://d.old.wanfangdata.com.cn/Periodical/sjcjycl201601001

    Lu H T, Zhang Q C. Applications of deep convolutional neural network in computer vision[J]. Journal of Data Acquisition and Processing, 2016, 31(1):1-17. http://d.old.wanfangdata.com.cn/Periodical/sjcjycl201601001
    [10]
    Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
    [11]
    Bouvrie J. Notes on convolutional neural networks[EB/OL]. (2006-11-22)[2015-10-11]. http://cogprints.org/5869/1/cnn_tutorial.pdf.
  • Related Articles

    [1]Zhang Yu, Gao Yayue, Chang Fengyuan, Xie Jiangjian, Zhang Junguo. Panthera unica recognition based on data expansion and ResNeSt with few samples[J]. Journal of Beijing Forestry University, 2021, 43(10): 89-99. DOI: 10.12171/j.1000-1522.20210185
    [2]Li Yanfu, Fan Xijian, Yang Xubing, Xu Xinzhou. Remote sensing image classification framework based on self-attention convolutional neural network[J]. Journal of Beijing Forestry University, 2021, 43(10): 81-88. DOI: 10.12171/j.1000-1522.20210196
    [3]Liu Jiazheng, Wang Xuefeng, Wang Tian. Image recognition of tree species based on multi feature fusion and CNN model[J]. Journal of Beijing Forestry University, 2019, 41(11): 76-86. DOI: 10.13332/j.1000-1522.20180366
    [4]Jiang Tao, Wang Xinjie. Convolutional neural network for GF-2 image stand type classification[J]. Journal of Beijing Forestry University, 2019, 41(9): 20-29. DOI: 10.13332/j.1000-1522.20180342
    [5]Liu Jiazheng, Wang Xuefeng, Wang Tian. Research on image recognition of five bark texture images based on deep learning[J]. Journal of Beijing Forestry University, 2019, 41(4): 146-154. DOI: 10.13332/j.1000-1522.20180242
    [6]Hu Jing, Chen Zhibo, Yang Meng, Zhang Rongguo, Cui Yaji. Plant leaf segmentation method based on fully convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(11): 131-136. DOI: 10.13332/j.1000-1522.20180007
    [7]Liu Wending, Li Anqi, Zhang Junguo, Xie Jiangjian, Bao Weidong. Automatic identification method for terrestrial wildlife in Saihanwula National Nature Reserve in Inner Mongolia of northern China based on ROI-CNN[J]. Journal of Beijing Forestry University, 2018, 40(8): 123-131. DOI: 10.13332/j.1000-1522.20180141
    [8]ZHANG Shuai, HUAI Yong-jian.. Leaf image recognition based on layered convolutions neural network deep learning.[J]. Journal of Beijing Forestry University, 2016, 38(9): 108-115. DOI: 10.13332/j.1000-1522.20160035
    [9]LIU Nian, KAN Jiang-ming. Plant leaf identification based on the multi-feature fusion and deep belief networks method[J]. Journal of Beijing Forestry University, 2016, 38(3): 110-119. DOI: 10.13332/j.1000-1522.20150267
    [10]HUANG Jia-rong, GAO Guang-qin, MENG Xian-yu, GUAN Yu-xiu. Forecasting stand diameter distribution based on artificial neural network.[J]. Journal of Beijing Forestry University, 2010, 32(3): 21-26.
  • Cited by

    Periodical cited type(11)

    1. 黄菲,张佛熠,钟嘉琳,李心,彭辉,邹冰燕,刘玮,王琼. 南昌城市森林土壤肥力综合评价及其空间分布特征. 中南林业科技大学学报. 2024(08): 129-138 .
    2. 吴家龙,张俊涛. 园林绿色废弃物资源价值实现的系统认知与路径探析——以广州市为例. 中国园林. 2024(08): 57-63 .
    3. 刘国梁,吴伟,李素艳,孙向阳,岳宗伟,魏宇光. 园林绿化废弃物堆肥配施化肥对土壤腐殖质碳组分的影响. 中国土壤与肥料. 2024(12): 27-35 .
    4. 史正军,潘松,冯世秀,袁峰均. 园林废弃物地表覆盖处理对植物生长及土壤细菌群落的影响. 草业学报. 2023(04): 153-160 .
    5. 潘松,赵玉梅,袁峰均,史正军. 园林废弃物地表覆盖对龙船花生长发育的影响. 热带作物学报. 2023(04): 766-773 .
    6. 余海洋. 基于自然解决方案的城市绿地系统营建策略. 现代园艺. 2023(11): 140-142 .
    7. 高星,贾慧果. 故宫景福宫古树土壤肥力特征分析评价. 北方农业学报. 2023(01): 45-60 .
    8. 闫芳彬,郑景明,宫殷婷,赵一臣,张家琦. 园林废弃物资源化处理对人工林土壤养分及微生物碳源利用的影响. 浙江农林大学学报. 2023(05): 1045-1053 .
    9. 胡永恒,张程,万华琴,朱咏莉,李萍萍. 不同园林废弃物堆肥过程中化学性状变化及其对发芽指数的影响. 南京林业大学学报(自然科学版). 2023(06): 133-140 .
    10. 潘松,史正军,毛晓宁,袁峰均,曾伟,焦玉佳. 园林废弃物覆盖材料组分及厚度对土壤化学性质的影响. 西部林业科学. 2022(05): 153-158 .
    11. 李小羊. 黔南地区市政园林工程建设中土壤改良技术措施研究. 工程技术研究. 2022(22): 215-217 .

    Other cited types(0)

Catalog

    Article views (1797) PDF downloads (51) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return