• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
SHEN Fang-fang, FAN Hou-bao, WU Jian-ping, LIU Wen-fei, LEI Xue-ming, LEI Xue-chen. Review on carbon isotope composition (δ13C) and its relationship with water use efficiency at leaf level[J]. Journal of Beijing Forestry University, 2017, 39(11): 114-124. DOI: 10.13332/j.1000-1522.20170142
Citation: SHEN Fang-fang, FAN Hou-bao, WU Jian-ping, LIU Wen-fei, LEI Xue-ming, LEI Xue-chen. Review on carbon isotope composition (δ13C) and its relationship with water use efficiency at leaf level[J]. Journal of Beijing Forestry University, 2017, 39(11): 114-124. DOI: 10.13332/j.1000-1522.20170142

Review on carbon isotope composition (δ13C) and its relationship with water use efficiency at leaf level

More Information
  • Received Date: April 26, 2017
  • Revised Date: June 09, 2017
  • Published Date: October 31, 2017
  • Water deficiency is a major global constraint for plant productivity that is likely to be exacerbated by climate change. Hence, improving plant water use efficiency (WUE) has become a major goal in the near future. WUE reflects the coupling of carbon and water cycles in plant-soil-atmosphere continuum. Analyzing WUE can improve our understanding of the interaction between carbon and water cycles in terrestrial ecosystems. Stable carbon isotope analysis has become the most effective techniques in plant ecological research. As an indicator, foliar carbon isotope discrimination (δ13C) is often used to evaluate long-term WUE in C3 plants. Study of δ13C and WUE can help to reveal and predict the response and adaptation of forest vegetation to global climate change. In this paper, the mechanism of characterization of δ13C and WUE, the factors influencing plant δ13C and WUE, including leaf traits, plant ecophysiology, climate factors, genetic control and genetic variation were summarized. The impacts of water stress and acid deposition on plant δ13C and WUE were also discussed. Plant stomatal conductance, specific leaf area, leaf nitrogen content, intercellular CO2 concentration, and atmospheric CO2 concentration were proposed to be the dominant factors influencing WUE variations due to their direct or indirect effects on plant net photosynthesis and transpiration rate. Generally, plants display higher WUE and lower δ13C when exposed to drought stress, and lower stomatal conductance and photosynthesis under long-term acid deposition. Nitrogen input will enhance plant productivity by improving water use efficiency. We suggest that the key role of quantitative trait loci, carbonic anhydrase, aquaporins, large and small subunits gene of Rubisco in the process of WUE genetic control must be highlighted when using stable isotope technique to study plant WUE. Finally, we must strengthen the study of multiple temporal and spatial scale variation and explore the application of combing analysis of δ13C and δ18O on the dual isotope conceptual model.
  • [1]
    王庆伟, 于大炮, 代力民, 等.全球气候变化下植物水分利用效率研究进展[J].应用生态学报, 2010, 21(12): 3255-3265. http://d.old.wanfangdata.com.cn/Periodical/yystxb201012036

    WANG Q W, YU D P, DAI L M, et al. Research progress in water use efficiency of plants under global climate change[J]. Chinese Journal of Applied Ecology, 2010, 21(12):3255-3265. http://d.old.wanfangdata.com.cn/Periodical/yystxb201012036
    [2]
    FARQUHAR G D, O'LEARY M H, BERRY J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J].Australian Journal of Plant Physiology, 1982, 9(2): 121-137. http://cn.bing.com/academic/profile?id=342dda2e500750688d70e79666a67f09&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    CHEN J, CHANG S X, ANYIA A O.The physiology and stability of leaf carbon isotope discrimination as a measure of water-use efficiency in barley on the Canadian prairies[J].Journal of Agronomy and Crop Science, 2011, 197(1):1-11. doi: 10.1111/j.1439-037X.2010.00440.x
    [4]
    任书杰, 于贵瑞.中国区域478种C3植物叶片碳稳定性同位素组成与水分利用效率[J].植物生态学报, 2011, 35(2):119-124. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201102001

    REN S J, YU G R. Carbon isotope composition (δ13C) of C3 plants and water use efficiency in China[J]. Chinese Journal of Plant Ecology, 2011, 35(2):119-124. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201102001
    [5]
    BCHIR A, ESCALONA J M, GALLÉ A, et al. Carbon isotope discrimination (δ13C) as an indicator of vine water status and water use efficiency (WUE): looking for the most representative sample and sampling time[J]. Agricultural Water Management, 2016, 167:11-20. doi: 10.1016/j.agwat.2015.12.018
    [6]
    渠春梅, 韩兴国, 苏波, 等.云南西双版纳片断化热带雨林植物叶片δ13C值的特点及其对水分利用效率的指示[J].植物学报, 2001, 43(2):186-192. doi: 10.3321/j.issn:1672-9072.2001.02.012

    QU C M, HAN X G, SU B, et al. The characteristics of foliar δ13C values of plants and plant water use efficiency indicated by δ13C values in two fragmented rainforests in Xishuangbanna, Yunnan[J]. Acta Botanica Sinica, 2001, 43(2): 186-192. doi: 10.3321/j.issn:1672-9072.2001.02.012
    [7]
    余新晓, 杨芝歌, 白艳婧, 等.基于δ13C值的北京山区典型树种水分利用效率研究[J].应用基础与工程科学学报, 2013, 21(4):593-599. doi: 10.3969/j.issn.1005-0930.2013.04.001

    YU X X, YANG Z G, BAI Y J, et al. Water use efficiency of typical tree species in Beijing mountainous area based on δ13C[J]. Journal of Basic Science and Engineering, 2013, 21(4):593-599. doi: 10.3969/j.issn.1005-0930.2013.04.001
    [8]
    FARQUHAR G D, EHLERINGER J R, HUBICK K T. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2003, 40(40):503-537. http://d.old.wanfangdata.com.cn/Periodical/zwxb200201013
    [9]
    SENSU B M. Spatial and short-temporal variability of δ13C and δ15N and water-use efficiency in pine needles of the three forests along the most industrialized part of Poland[J]. Water, Air, & Soil Pollution, 2015, 226(11):362. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594085/
    [10]
    赵风华, 于贵瑞.陆地生态系统碳—水耦合机制初探[J].地理科学进展, 2008, 27(1):32-38. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz200801005

    ZHAO F H, YU G R. A review on the coupled carbon and water cycles in the terrestrial ecosystems[J]. Progress in Geography, 2008, 27(1):32-38. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz200801005
    [11]
    何聪, 熊伟, 王彦辉, 等.六盘山北侧华北落叶松林分的水分利用效率研究[J].水土保持研究, 2011, 18(5):112-118, 123. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201105024

    HE C, XIONG W, WANG Y H, et al. The water use efficiency of Larix principis-rupprechtii plantation in the northern Liupan Mountain[J]. Research of Soil and Water Conservation, 2011, 18(5):112-118, 123. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201105024
    [12]
    胡中民, 于贵瑞, 王秋凤, 等.生态系统水分利用效率研究进展[J].生态学报, 2009, 29(3): 1498-1507. doi: 10.3321/j.issn:1000-0933.2009.03.048

    HU Z M, YU G R, WANG Q F, et al. Ecosystem level water use efficiency: a review[J]. Acta Ecologica Sinica, 2009, 29(3): 1498-1507. doi: 10.3321/j.issn:1000-0933.2009.03.048
    [13]
    ZHU X J, YU G R, WANG Q F, et al. Spatial variability of water use efficiency in China's terrestrial ecosystems[J]. Global and Planetary Change, 2015, 129(1):37-44. http://cn.bing.com/academic/profile?id=1463091344b273d8146534c65f2f5b86&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    张远东, 庞瑞, 顾峰雪, 等.西南高山地区水分利用效率时空动态及其对气候变化的响应[J].生态学报, 2016, 36(6):1515-1525. http://d.old.wanfangdata.com.cn/Periodical/stxb201606004

    ZHANG Y D, PANG R, GU F X, et al. Temporal-spatial variations of WUE and its response to climate change in alpine area of southwestern China[J]. Acta Ecologica Sinica, 2016, 36(6):1515-1525. http://d.old.wanfangdata.com.cn/Periodical/stxb201606004
    [15]
    ZHU X J, YU G R, WANG Q F, et al. Mechanisms underlying the spatial variation of WUE among terrestrial ecosystems in China[J]. EGU General Assembly Conference, 2014, 16: 9719.
    [16]
    ADIREDJO A L, NAVAUD O, MUÑOS S, et al. Genetic control of water use efficiency and leaf carbon isotope discrimination in sunflower (Helianthus annuus L.) subjected to two drought scenarios[J/OL]. PLoS ONE, 2014, 9(7):e101218. http://euroopepmc.org/articles/PMC4081578.
    [17]
    ADIREDJO A L, NAVAUD O, LAMAZE T, et al. Leaf carbon isotope discrimination as an accurate indicator of water-use efficiency in sunflower genotypes subjected to five stable soil water contents [J]. Journal of Agronomy and Crop Science, 2014, 200(6):416-424.
    [18]
    TALLEC T, BÉZIAT P, JAROSZ N, et al. Crops' water use efficiencies in temperate climate: comparison of stand, ecosystem and agronomical approaches[J]. Agricultural and Forest Meteorology, 2013, 168(3):69-81. http://cn.bing.com/academic/profile?id=d0db0132c1be0f52531870a3d6c754e3&encoded=0&v=paper_preview&mkt=zh-cn
    [19]
    WANG Y Z, ZHANG X Y, LIU X W, et al. The effects of nitrogen supply and water regime on instantaneous WUE, time integrated WUE and carbon isotope discrimination in winter wheat[J]. Field Crops Research, 2013, 144(1): 236-244. http://cn.bing.com/academic/profile?id=9e127efb091e5b3650e95f64717cce18&encoded=0&v=paper_preview&mkt=zh-cn
    [20]
    FLEXAS J, DÍAZ-ESPEJO A, CONESA M A, et al. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants[J]. Plant Cell & Environment, 2016, 39(5): 965-982. http://www.ncbi.nlm.nih.gov/pubmed/26297108/
    [21]
    THOMAS R B, SPAL S E, SMITH K R, et al. Evidence of recovery of Juniperus virginiana trees from sulfur pollution after the Clean Air Act[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(38):15319-15324. doi: 10.1073/pnas.1308115110
    [22]
    SENSUL A B M.δ13C and water use efficiency in the glucose of annual pine tree rings as ecological indicators of the forests in the most industrialized part of Poland[J]. Water, Air, & Soil Pollution, 2016, 227(2): 68. http://www.ncbi.nlm.nih.gov/pubmed/26893529
    [23]
    BRAMLEY H, TURNER N C, SIDDIQUE K H M. Water use efficiency[M]//CHITTARANJAN K. Genomics and Breeding for Climate-Resilient Crops. Berlin: Springer Heidelberg, 2013: 225-268.
    [24]
    MEDRANO H, TOMÁS M, MARTORELL S, et al. From leaf to whole-plant water use efficiency (WUE) in complex canopies: limitations of leaf WUE as a selection target[J]. The Crop Journal, 2015, 3(3):220-228. doi: 10.1016/j.cj.2015.04.002
    [25]
    ROUSSEL M, DREYER E, MONTPIED P, et al. The diversity of 13C isotope discrimination in a Quercus robur full-sib family is associated with differences in intrinsic water use efficiency, transpiration efficiency, and stomatal conductance[J]. Journal of Experimental Botany, 2009, 60(8): 2419-2431. doi: 10.1093/jxb/erp100
    [26]
    ROUSSEL M, LE THIEC D L, MONTPIED P, et al. Diversity of water use efficiency among Quercus robur genotypes: contribution of related leaf traits[J]. Annals of Forest Science, 2009, 66(4):408-410. doi: 10.1051/forest/2009010
    [27]
    CAO X, JIA J B, LI H, et al. Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species[J]. Plant Biology, 2012, 14(4): 612-620. doi: 10.1111/j.1438-8677.2011.00531.x
    [28]
    HACKE U G, PLAVCOVÁ L, ALMEIDA-RODRIGUEZ A, et al. Influence of nitrogen fertilization on xylem traits and aquaporin expression in stems of hybrid poplar[J]. Tree Physiology, 2010, 30(8):1016-1025. doi: 10.1093/treephys/tpq058
    [29]
    张海娜, 苏培玺, 李善家, 等.荒漠区植物光合器官解剖结构对水分利用效率的指示作用[J].生态学报, 2013, 33(16):4909-4918. http://d.old.wanfangdata.com.cn/Periodical/stxb201316010

    ZHANG H N, SU P X, LI S J, et al. Indicative effect of the anatomical structure of plant photosynthetic organ on WUE in desert region[J]. Acta Ecologica Sinica, 2013, 33(16):4909-4918. http://d.old.wanfangdata.com.cn/Periodical/stxb201316010
    [30]
    GRASSI G, MEIR P, CROMER R, et al. Photosynthetic parameters in seedlings of Eucalyptus grandis as affected by rate of nitrogen supply[J]. Plant Cell Environment, 2002, 25(12):1677-1688. doi: 10.1046/j.1365-3040.2002.00946.x
    [31]
    苏培玺, 严巧嫡, 陈怀顺.荒漠植物叶片或同化枝δ13C值及水分利用效率研究[J].西北植物学报, 2005, 25(4): 727-732. doi: 10.3321/j.issn:1000-4025.2005.04.017

    SU P X, YAN Q D, CHEN H S.δ13C values and water use efficiency of the leaves and assimilating shoots of desert plants[J]. Acta Botanica Boreali-occidentalia Sinca, 2005, 25(4): 727-732. doi: 10.3321/j.issn:1000-4025.2005.04.017
    [32]
    GAGO J, DOUTHE C, FLOREZ-SARASA I, et al. Opportunities for improving leaf water use efficiency under climate change conditions[J]. Plant Science, 2014, 226: 108-119. doi: 10.1016/j.plantsci.2014.04.007
    [33]
    GAGEN M, FINSINGER W, WAGNER-CREMER F, et al. Evidence of changing intrinsic water-use efficiency under rising atmospheric CO2 concentrations in Boreal Fennoscandia from subfossil leaves and tree ring δ13C ratios[J]. Global Change Biology, 2011, 17(2): 1064-1072. doi: 10.1111/j.1365-2486.2010.02273.x
    [34]
    BÖGELEIN R, HASSDENTEUFEL M, THOMAS F M, et al. Comparison of leaf gas exchange and stable isotope signature of water-soluble compounds along canopy gradients of co-occurring Douglas-fir and European beech[J]. Plant Cell Environment, 2012, 35(7): 1245-1257. doi: 10.1111/j.1365-3040.2012.02486.x
    [35]
    KONATE N M, DREYER E, EPRON D. Differences in carbon isotope discrimination and whole-plant transpiration efficiency among nine Australian and Sahelian Acacia species[J]. Annals of Forest Science, 2016, 73(4):1-9.
    [36]
    RIPULLONE F, LAUTERI M, GRASSI G, et al. Variation in nitrogen supply changes water-use efficiency of Pseudotsuga menziesii and Populus x euroamericana: a comparison of three approaches to determine water-use efficiency[J].Tree Physiology, 2004, 24(6):671-679. doi: 10.1093/treephys/24.6.671
    [37]
    SCHLESINGER W H, JASECHKO S. Transpiration in the global water cycle[J]. Agricultural & Forest Meteorology, 2014, 189-190:115-117. http://cn.bing.com/academic/profile?id=6638a282c6f845b3cae1b13dd1e2437a&encoded=0&v=paper_preview&mkt=zh-cn
    [38]
    陈拓, 冯虎元, 徐世建, 等.荒漠植物叶片碳同位素组成及其水分利用效率[J].中国沙漠, 2002, 22(3):288-291. doi: 10.3321/j.issn:1000-694X.2002.03.016

    CHEN T, FENG H Y, XU S J, et al. Stable carbon isotope composition of desert plant leaves and water-use efficiency[J]. Journal of Desert Research, 2002, 22(3): 288-291. doi: 10.3321/j.issn:1000-694X.2002.03.016
    [39]
    刘贤赵, 王国安, 李嘉竹, 等.中国北方农牧交错带C3草本植物δ13C与温度的关系及其对水分利用效率的指示[J].生态学报, 2011, 31(1):123-136. http://d.old.wanfangdata.com.cn/Periodical/stxb201101015

    LIU X Z, WANG G A, LI J Z, et al. Relationship between temperature and δ13C values of C3 herbaceous plants and its implications of WUE in farming-pastoral zone in North China[J]. Acta Ecologica Sinica, 2011, 31(1):123-136. http://d.old.wanfangdata.com.cn/Periodical/stxb201101015
    [40]
    谭巍, 陈洪松, 王克林, 等.桂西北喀斯特坡地典型生境不同植物叶片的碳同位素差异[J].生态学杂志, 2010, 29(9):1709-1714. http://d.old.wanfangdata.com.cn/Periodical/stxzz201009006

    TAN W, CHEN H S, WANG K L, et al. Differences in foliar carbon isotope ratio of dominant plant species in representative habitats on karst hill slopes of northwest Guangxi, China[J]. Chinese Journal of Ecology, 2010, 29(9): 1709-1714. http://d.old.wanfangdata.com.cn/Periodical/stxzz201009006
    [41]
    PEREZ-MARTIN A, MICHELAZZO C, TORRES-RUIZ J M, et al. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins[J]. Journal of Experimental Botany, 2014, 65(12): 3143-3156. doi: 10.1093/jxb/eru160
    [42]
    HALL A E, RICHARDS R A, CONDON A G, et al. Carbon isotope discrimination and plant breeding[J]. Plant Breeding Reviews, 1994, 12: 81-113. http://d.old.wanfangdata.com.cn/Periodical/zwxb200710009
    [43]
    MASLE J, GILMORE S R, FARQUHAR G D. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis[J]. Nature, 2005, 436, 866-870. doi: 10.1038/nature03835
    [44]
    全先奎, 王传宽.帽儿山17个种源落叶松针叶的水分利用效率比较[J].植物生态学报, 2015, 39(4):352-361. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201504005

    QUAN X K, WANG C K. Comparison of foliar water use efficiency among 17 provenances of Larix gmelinii in the Mao'ershan area[J]. Chinese Journal of Plant Ecology, 2015, 39(4):352-361. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201504005
    [45]
    DE MIGUEL M, SÁNCHEZ-G MEZ D, CERVERA M T, et al. Functional and genetic characterization of gas exchange and intrinsic water use efficiency in a full-sib family of Pinus pinaster Ait. in response to drought[J]. Tree Physiology, 2012, 32(1): 94-103. doi: 10.1093/treephys/tpr122
    [46]
    BRENDEL O, LE THIEC D, SCOTTI-SAINTAGNE C, et al. Quantitative trait loci controlling water use efficiency and related traits in Quercus robur L.[J]. Tree Genetics & Genomes, 2008, 4(2): 263-278.
    [47]
    TAIZ L, ZEIGER E.Plant physiology, fifth edition[M]. 5th ed. Sunderland: Sinauer Associates Inc, 2010.
    [48]
    SANTESTEBAN L G, MIRANDA C, BARBARIN I, et al. Application of the measurement of the natural abundance of stable isotopes in viticulture: a review[J]. Australian Journal of Grape Wine Research, 2015, 21(2): 157-167. doi: 10.1111/ajgw.12124
    [49]
    阮志平, 唐源江, 曾美涓.干旱胁迫对4种棕榈植物幼苗光合特性及抗氧化酶活性的影响[J].热带作物学报, 2016, 37(10):1914-1919. doi: 10.3969/j.issn.1000-2561.2016.10.011

    RUAN Z P, TANG Y J, ZENG M J. Influence of drought stress on photosynthetic characteristics and activity of antioxidant enzymes of four species of palm seedlings[J]. Chinese Journal of Tropical Crops, 2016, 37(10): 1914-1919. doi: 10.3969/j.issn.1000-2561.2016.10.011
    [50]
    何春霞, 李吉跃, 孟平, 等.4种高大树木的叶片性状及WUE随树高的变化[J].生态学报, 2013, 33(18): 5644-5654. http://d.old.wanfangdata.com.cn/Periodical/stxb201318026

    HE C X, LI J Y, MENG P, et al. Changes of leaf traits and WUE with crown height of four tall tree species[J]. Acta Ecologica Sinica, 2013, 33(18):5644-5654. http://d.old.wanfangdata.com.cn/Periodical/stxb201318026
    [51]
    LÁZARO-NOGAL A, FORNER A, TRAVESET A, et al. Contrasting water strategies of two Mediterranean shrubs of limited distribution: uncertain future under a drier climate[J]. Tree Physiology, 2013, 33(12):1284-1295. doi: 10.1093/treephys/tpt103
    [52]
    ČADA V,ŠANTR ŬČKOVÁ H,ŠANTR ŬČEK J, et al.Complex physiological response of Norway spruce to atmospheric pollution-decreased carbon isotope discrimination and unchanged tree biomass increment[J]. Frontiers in Plant Science, 2016, 7:805.
    [53]
    MENG F R, COX R M, ARP P A. Fumigating mature spruce branches with SO2 effects on net photosynthesis and stomatal conductance[J]. Canadian Journal of Forest Research, 1994, 24(7):1464-1471. doi: 10.1139/x94-189
    [54]
    GALLOWAY J N, DENTENNER F, CAPONE D, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153-226. doi: 10.1007/s10533-004-0370-0
    [55]
    郑飞翔, 温达志, 旷远文.模拟酸雨对柚木幼苗生长、光合与水分利用的影响[J].热带亚热带植物学报, 2006, 14(2):93-99. doi: 10.3969/j.issn.1005-3395.2006.02.001

    ZHENG F X, WEN D Z, KUANG Y W. Effects of simulated acid rain on the growth, photosynthesis and water use efficiency in Tectona grandis[J]. Journal of Tropical and Subtropical Botany, 2006, 14(2):93-99. doi: 10.3969/j.issn.1005-3395.2006.02.001
    [56]
    赵巍巍, 江洪, 马元丹.模拟酸雨胁迫对樟树幼苗光合作用和水分利用特性的影响[J].浙江农林大学学报, 2013, 30(2):179-186. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201302004

    ZHAO W W, JIANG H, MA Y D. Photosynthesis and water use characteristics of Cinnamomum camphora seedlings with simulated acid rain[J]. Journal of Zhejiang A & F University, 2013, 30(2):179-186. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201302004
    [57]
    GLEASON J D, AMP J D, KYSER T K. Stable isotope compositions of gases and vegetation near naturally burning coal[J]. Nature, 1984, 307:254-257. doi: 10.1038/307254a0
    [58]
    MOOK W G, KOOPMANS M, CARTER A F, et al. Seasonal, latitudinal, and secular variations in the abundance and isotopic ratios of atmospheric carbon dioxide(1): results from land stations[J]. Journal of Geophysical Research, 1983(88):10915-10933.
    [59]
    INOUE H, SUGIMURA Y. Diurnal change in δ13C of atmospheric CO2 at Tsukuba, Japan[J]. Geochemical Journal, 1984, 18(6): 315-320. doi: 10.2343/geochemj.18.315
    [60]
    WONG S C, COWAN I R, FARQUHAR G D. Stomatal conductance correlates with photosynthetic capacity[J]. Nature, 1979, 282(5737):424-426. doi: 10.1038/282424a0
    [61]
    CORNEJO-OVIEDO E H, VOELKER S L, MAINWARING D B, et al. Basal area growth, carbon isotope discrimination, and intrinsic water use efficiency after fertilization of Douglas-fir in the Oregon Coast Range[J]. Forest Ecology Management, 2017, 389: 285-295. doi: 10.1016/j.foreco.2017.01.005
    [62]
    SAVARD M M. Tree-rings stable isotopes and historical perspectives on pollution-an overview[J]. Environmental Pollution, 2010, 158(6): 2007-2013. doi: 10.1016/j.envpol.2009.11.031
    [63]
    RINNER K T, LOADER N J, SWITSUR V R, et al. Investigating the influence of sulphur dioxide (SO2) on the stable isotope ratios (δ13C and δ18O) of tree rings[J]. Geochimica et Cosmochimica Acta, 2010, 74:2327-2339. doi: 10.1016/j.gca.2010.01.021
    [64]
    高暝, 黄秦军, 丁昌俊, 等.美洲黑杨及其杂种F1不同生长势无性系叶片δ13C和氮素利用效率[J].林业科学, 2013, 49(8):51-57. http://d.old.wanfangdata.com.cn/Periodical/lykx201308008

    GAO M, HUANG Q J, DING C J, et al. Foliar δ13C and nitrogen use efficient of Populus deltoides and the different growth vigor F1 hybrid clones[J]. Scientia Silvae Sinicae, 2013, 49(8):51-57. http://d.old.wanfangdata.com.cn/Periodical/lykx201308008
    [65]
    CROUS K Y, WALTERS M B, ELLSWORTH D S. Elevated CO2 concentration affects leaf photosynthesis-nitrogen relationships in Pinus taeda over nine years in FACE[J]. Tree Physiology, 2008, 28(4):607-614. doi: 10.1093/treephys/28.4.607
    [66]
    YAN J H, ZHANG D Q, LIU J X, et al. Interactions between CO2 enhancement and N addition on net primary productivity and water-use efficiency in a mesocosm with multiple subtropical tree species[J]. Global Change Biology, 2014, 20: 2230-2239. doi: 10.1111/gcb.12501
    [67]
    SHENG W P, REN S J, YU G R, et al. Patterns and driving factors of WUE and NUE in natural forest ecosystems along the north-south transect of eastern China[J]. Journal of Geographical Sciences, 2011, 21(4): 651-665. doi: 10.1007/s11442-011-0870-5
  • Related Articles

    [1]Zhang Yi, Baiketuerhan Yeerjiang, Wang Xuanying, Zhang Xinna, Cheng Yanxia. Response of photosynthetic physiological characteristics of rare broadleaved tree species Juglans mandshurica seedlings to simulated nitrogen deposition[J]. Journal of Beijing Forestry University, 2024, 46(1): 10-18. DOI: 10.12171/j.1000-1522.20220225
    [2]Jiang Fan, A Siha, Cai Jingfang, Sun Kai, Shen Yiluan, Gao Haiyan, Li Hongli. Short-term effects of disturbance and nitrogen deposition on Alternanthera philoxeroides invading wetland plant communities[J]. Journal of Beijing Forestry University, 2023, 45(5): 119-132. DOI: 10.12171/j.1000-1522.20210552
    [3]WANG Jin-song, ZHAO Xiu-hai, ZHANG Chun-yu, LI Hua-shan, WANG Na, ZHAO Bo. Effects of simulated nitrogen deposition on soil organic carbon and total nitrogen content in plantation and natural forests of Pinus tabuliformis.[J]. Journal of Beijing Forestry University, 2016, 38(10): 88-94. DOI: 10.13332/j.1000-1522.20140294
    [4]HAN Shi-jie, WANG Qing-gui. Response of boreal forest ecosystem to global climate change: a review[J]. Journal of Beijing Forestry University, 2016, 38(4): 1-20. DOI: 10.13332/j.1000-1522.20160046
    [5]WANG Jin-song, WANG Chen, ZHAO Xiu-hai, ZHANG Chun-yu, LI Hua-shan, WANG Na, ZHAO Bo. Effects of simulated nitrogen deposition on decomposition of single and mixed leaf litters in the plantation and natural forests of Pinus tabulaeformis.[J]. Journal of Beijing Forestry University, 2015, 37(10): 14-21. DOI: 10.13332/j.1000-1522.20140292
    [6]SUN Su-qi, WANG Yun-qi, WANG Yu-jie, ZHANG Hui-lan, YU Lei, TANG Xiao-fen, ZHU Jin-qi, ZHOU Bin. Composition and temporal variation of atmospheric nitrogen wet deposition in Jinyun Mountain,southwestern China.[J]. Journal of Beijing Forestry University, 2013, 35(4): 47-54.
    [7]XIA Lei, ZHAO Zhi-xin, TANG Ling, LI Xiao-le, LIU Lei, LI Ming-yang. Diurnal changes in summer photosynthetic rate of Phoenix canariensis in relation with environmental factors in Chongqing, Southwestern China[J]. Journal of Beijing Forestry University, 2011, 33(4): 75-80.
    [8]FAN Hou-bao, , LIU Wen-fei, YANG Yue-lin, ZHANG Zi-wen, CAO Hanyang, XU Lei. Decomposition of leaf litter of Chinese fir in response to increased nitrogen deposition[J]. Journal of Beijing Forestry University, 2008, 30(2): 8-13.
    [9]LU Xian-kai, MO Jiang-ming, LI De-jun, ZHANG Wei, FANG Yun-ting. Effects of simulated N deposition on the photosynthetic and physiologic characteristics of dominant understorey plants in Dinghushan Mountain of subtropical China[J]. Journal of Beijing Forestry University, 2007, 29(6): 1-9. DOI: 10.13332/j.1000-1522.2007.06.030
    [10]XU Guo-liang, MO Jiang-ming, ZHOU Guo-yi. Effects of N deposition on soil fauna:a summary for one year[J]. Journal of Beijing Forestry University, 2006, 28(3): 1-7.
  • Cited by

    Periodical cited type(8)

    1. 张慧,燕怡帆,朱雅,陈玉婷,王菁华,崔志鹏,杨迪,任学敏. 林分密度对伏牛山南麓山茱萸人工林林下草本植物多样性和土壤性质的影响. 西南林业大学学报(自然科学). 2025(01): 96-105 .
    2. 赵金同,马俊. 刺槐扦插育苗技术与精细抚育要点. 现代园艺. 2024(08): 49-51 .
    3. 何欢,康必均,尹婧,李菲,彭栋,李桂静,查同刚. 不同营林措施对川东华蓥山杉木林土壤团聚体稳定性及细根分布的影响. 土壤通报. 2024(02): 351-359 .
    4. 史小鹏,苟贺然,何淑勤,刘柏廷,冉兰芳,杨琪琳,扎西拉姆,陈雨馨,骆紫藤. 成都市温江区两种绿地土壤抗蚀抗冲性及其影响因素. 水土保持通报. 2024(04): 117-125 .
    5. 刘忆南,申振宏,都都,张知然,林勇明. 蒋家沟泥石流堆积扇不同植被类型区土壤抗蚀性评价. 应用与环境生物学报. 2024(05): 886-893 .
    6. 王依瑞,王彦辉,段文标,李平平,于澎涛,甄理,李志鑫,尚会军. 黄土高原刺槐人工林郁闭度对林下植物多样性特征的影响. 应用生态学报. 2023(02): 305-314 .
    7. 赵云鹤,钟鹏,高晗,付玉. 土地利用类型对典型黑土团聚体稳定性和抗蚀性的影响. 东北林业大学学报. 2023(09): 112-119 .
    8. 胡亚伟,施政乐,刘畅,徐勤涛,张建军. 晋西黄土区刺槐林密度对林下植物多样性及土壤理化性质的影响. 生态学杂志. 2023(09): 2072-2080 .

    Other cited types(8)

Catalog

    Article views (4455) PDF downloads (430) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return