• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Ming-ze, Yu Xin-tong, Gao Yuan-ke, Fan Wen-yi. Remote sensing quantification on forest biomass based on SAR polarization decomposition and Landsat data[J]. Journal of Beijing Forestry University, 2018, 40(2): 1-10. DOI: 10.13332/j.1000-1522.20170284
Citation: Li Ming-ze, Yu Xin-tong, Gao Yuan-ke, Fan Wen-yi. Remote sensing quantification on forest biomass based on SAR polarization decomposition and Landsat data[J]. Journal of Beijing Forestry University, 2018, 40(2): 1-10. DOI: 10.13332/j.1000-1522.20170284

Remote sensing quantification on forest biomass based on SAR polarization decomposition and Landsat data

More Information
  • Received Date: August 21, 2017
  • Revised Date: December 10, 2017
  • Published Date: January 31, 2018
  • ObjectiveForest biomass is one of the important indexes to evaluate the structure, function and productivity of forest ecosystem, and accurate forest biomass estimation on regional scale has great significance in understanding the current forest status and scientific forest management. This study aims to quantify regional scale forest biomass through the polarimetric SAR and Landsat5 TM.
    MethodFirstly, SAR data was polarized by polarization decomposition. Then 51 parameters from 45 polarization decomposition parameters and 6 TM bands were used as predictor variables with forest biomass W as response variables, the best model was used in the research area finally.
    ResultTwo methods were implemented for model construction: (1) stepwise regression, the final model includes two variables with R2 of 0.534, predicting accuracy of 67.51% and RMSE of 43.21 t/ha; (2) Optimal subset method, Bootstrap was applied to select 9 parameters. Then, we got 511 models by optimal subset method and cross-validation was used for model validation. The final model had 5 parameters(TM_band4, Neumann_delta_mod, Neumann_psi, TSVM_psi, TSVM_tau_m3), R2 of 0.768 2, simulating accuracy of 88.32%, simulating RMSE of 14.98 t/ha, test accuracy of 86.21%, test RMSE of 19.14 t/ha, Mallows'Cp of 5.249 5 and AIC of 256.504 5 t/ha. We used optimal subset method to build forest biomass estimation model and acquired forest biomass distributing map.
    ConclusionThe results show that C band polarimetric SAR and optical Landsat5 TM data can get accurate estimation of forest biomass.
  • [1]
    黎夏, 叶嘉安, 王树功, 等.红树林湿地植被生物量的雷达遥感估算[J].遥感学报, 2006, 10(3):387-396. http://d.old.wanfangdata.com.cn/Periodical/ygxb200603016

    Li X, Ye J A, Wang S G, et al. Estmiating mangrove wetland biomass using radar remote sensing[J].Journal of Remote Sensing, 2006, 10(3):387-396. http://d.old.wanfangdata.com.cn/Periodical/ygxb200603016
    [2]
    Kurvonen L, Pulliainen J, Hallikainen M, et al. Retrieval of forest parameters from multitemporal spaceborne SAR data[C]//Proceedings of the Geoscience and Remote Sensing Symposium. New York: IEEE, 1996: 27-31.
    [3]
    王臣立, 郭治兴, 牛铮, 等.热带人工林生物物理参数及生物量对RADARSAT SAR信号响应研究[J].生态环境, 2006, 15(1):115-119. doi: 10.3969/j.issn.1674-5906.2006.01.025

    Wang C L, Guo Z X, Niu Z, et al. Study on forest biophysics parameter impact on RADAR signature[J]. Ecology and Environment, 2006, 15(1):115-119. doi: 10.3969/j.issn.1674-5906.2006.01.025
    [4]
    Dobson M C, Ulaby F T, Letoan T, et al.Dependence of radar backscatter on coniferous forest biomass[J].IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 412-415. doi: 10.1109/36.134090
    [5]
    徐星欧.基于目标分解的全极化雷达数据估算生物量相关参数方法的研究[D].武汉: 武汉大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10486-1011065734.htm

    Xu X O.Biomass related parameter retrieving from Quad-Pol image via target decomposition method[D]. Wuhan: Wuhan University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10486-1011065734.htm
    [6]
    Fransson J E S, Smith G, Askne J, et al.Stem volume estimation in boreal forests using ERS-1/2 coherence and SPOT XS optical data[J].IEEE Transaction on International Journal of Remote Sensing, 2001, 22(14):2777-2791. doi: 10.1080/01431160010006872
    [7]
    董利虎.东北林区主要树种及林分类型生物量模型研究[D].哈尔滨: 东北林业大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10225-1015655568.htm

    Dong L H. Developing individual and stand-level biomass equations in northeast china forest area[D].Harbin: Northeast Forestry University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10225-1015655568.htm
    [8]
    孙国清.雷达后向散射模型及其在雷达图像地形影响纠正中的应用[J].遥感学报, 2012, 6(6):406-411. http://d.old.wanfangdata.com.cn/Periodical/ygxb200206002

    Sun G Q.Radar back scatter model and its application in terrain-effect reduciton of radar imagery[J].Journal of Remote Sensing, 2012, 6(6):406-411. http://d.old.wanfangdata.com.cn/Periodical/ygxb200206002
    [9]
    郭志华, 彭少麟, 王伯荪.利用TM数据提取粤西地区的森林生物量[J].生态学报, 2002, 22(11):1832-1839. doi: 10.3321/j.issn:1000-0933.2002.11.006

    Guo Z H, Peng S L, Wang B S. Estimating forest biomass in western Guangdong using landsat TM data[J]. Acta Ecologica Sinica, 2002, 22(11):1832-1839. doi: 10.3321/j.issn:1000-0933.2002.11.006
    [10]
    安文韬.基于极化SAR的目标极化分解与散射特征提取研究[D].北京: 清华大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10003-1011280521.htm

    An W T.The polarimetric decomposition and scattering characteristic extraction of polarimetric SAR[D].Beijing: Tsinghua University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10003-1011280521.htm
    [11]
    葛蕴萍.星载SAR辐射定标处理与评估系统的设计与实现[J].国外电子测量技术, 2014, 33(7):53-58. doi: 10.3969/j.issn.1002-8978.2014.07.018

    Ge Y P.Design and implementation of spaceborne SAR calibration processing and evaluating system[J]. Foreign Electronic Measurement Technology, 2014, 33(7):53-58. doi: 10.3969/j.issn.1002-8978.2014.07.018
    [12]
    李棉全.全极化测量雷达信号处理方法研究[D].北京: 国防科学技术大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-90002-2009213266.htm

    Li M Q.Research of signal processing mechanism for fully polarimetric radar[D].Beijing: National University of Defense Technology, 2008. http://cdmd.cnki.com.cn/Article/CDMD-90002-2009213266.htm
    [13]
    Cloude S R, Pottier E. A review of target decomposition theorems in radar polarimetry[J].IEEE Transactions on Geosciences and Remote Sensing, 1996, 34(2):498-517. doi: 10.1109/36.485127
    [14]
    钟慧.基于稀疏表达的遥感数据集相关性分析[D].北京: 中国科学技术大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10358-1015615516.htm

    Zhong H.The correlation analysis of remote sensing data sets based on sparse representation[D].Beijing: University of Science and Technology of China, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10358-1015615516.htm
    [15]
    魏艳华, 王丙参, 邢永忠.基于Bootstrap方法的回归分析的比较[J].统计与决策, 2016(3):77-79. http://d.old.wanfangdata.com.cn/Periodical/tjyjc201603020

    Wei Y H, Wang B C, Xing Y Z.Comparison of regression analysis based on Bootstrap method[J]. Statistics and Decision, 2016(3):77-79. http://d.old.wanfangdata.com.cn/Periodical/tjyjc201603020
    [16]
    冯大光, 范昊明, 王铁良.基于最优回归子集的土壤解冻期降雨侵蚀模拟试验分析[J].沈阳农业大学学报, 2016, 47(1):124-128. http://d.old.wanfangdata.com.cn/Periodical/synydxxb201601021

    Feng D G, Fan H M, Wang T L.Simulation soil erosion during the period of thawing based on optimal regression subsets[J]. Journal of Shenyang Agricultural University, 2016, 47(1):124-128. http://d.old.wanfangdata.com.cn/Periodical/synydxxb201601021
    [17]
    白鹏利, 王钧, 尹焕才, 等.基于偏最小二乘留一交叉验证法的近红外光谱建模样品选择方法的研究[J].食品安全质量检测学报, 2017, 8(1):182-186. http://d.old.wanfangdata.com.cn/Periodical/spaqzljcjs201701030

    Bai P L, Wang J, Yin H C, et al.Study on the sample selection methods for building calibration model by near infrared spectroscopy based on partial least squares-leave one out-cross validation[J]. Journal of Food Safety & Quality, 2017, 8(1):182-186. http://d.old.wanfangdata.com.cn/Periodical/spaqzljcjs201701030
  • Related Articles

    [1]Ji Yongjie, Xu Kunpeng, Zhang Wangfei, Shi Jianmin, Zhang Fuxiang. Comparative analysis of forest biomass retrieval from water cloud model (WCM) of polarized SAR data with different wavelengths[J]. Journal of Beijing Forestry University, 2023, 45(2): 24-33. DOI: 10.12171/j.1000-1522.20220006
    [2]Du Xue, Bai Yanfeng, Du Zhi, Meng Jinghui. Optimal equilibrium curve of natural secondary forest of Pinus massoniana in Hunan Province of Central China[J]. Journal of Beijing Forestry University, 2023, 45(1): 21-29. DOI: 10.12171/j.1000-1522.20210199
    [3]Zang Hao, Huang Jincheng, Liu Hongsheng, Ouyang Xunzhi, Jiang Jun, Ning Jinkui. Optimal rotation period of carbon sequestration wood multifunctional management in Chinese fir plantation[J]. Journal of Beijing Forestry University, 2022, 44(10): 120-128. DOI: 10.12171/j.1000-1522.20220399
    [4]Li Yun, Zhang Wangfei, Cui Junbo, Li Chunmei, Ji Yongjie. Inversion exploration on forest aboveground biomass of optical and SAR data supported by parameter optimization method[J]. Journal of Beijing Forestry University, 2020, 42(10): 11-19. DOI: 10.12171/j.1000-1522.20190389
    [5]Chen Ying, Dong Lingbo, Liu Zhaogang. Optimal species composition for the main forest types of secondary forest in Maoershan Mountain, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(5): 118-126. DOI: 10.13332/j.1000-1522.20190013
    [6]LI Bin, YANG Xiao-tian, WANG Shu-yang.. Simulated optimization of small UAV fuselage for forest fire prevention based on FLUENT.[J]. Journal of Beijing Forestry University, 2015, 37(11): 115-119. DOI: 10.13332/j.1000-1522.20150132
    [7]LIU Zheng-min, GUO Su-juan, XU Cheng, QIN Tian-tian, SUN Xiao-bing. Optimal fertilization for Castanea mollissima ‘Yanshanzaofeng’ based on the saturated D-optimal design.[J]. Journal of Beijing Forestry University, 2015, 37(1): 70-83. DOI: 10.13332/j.cnki.jbfu.2015.01.016
    [8]ZHAO Junhui, KANG Xingang, LIU Yan. Optimal height-diameter models for dominant coniferous species in Changbai Mountain, northeastern China.[J]. Journal of Beijing Forestry University, 2009, 31(4): 13-18.
    [9]ZHANG Ying, WEN Ya-li, LIU Jun-chang. Optimization of forest policy in China from the point of green accounting for forests[J]. Journal of Beijing Forestry University, 2007, 29(3): 164-170. DOI: 10.13332/j.1000-1522.2007.03.027
    [10]LI Shi-dong. SD-based study of the optimized model of conversion of farmland to forests on typical sites[J]. Journal of Beijing Forestry University, 2006, 28(2): 22-28.
  • Cited by

    Periodical cited type(7)

    1. 万常兴,吕帅元,马仁跃. 基于风洞模拟的高原积沙公路护栏选型研究. 北方交通. 2024(05): 52-56 .
    2. 王翠,李生宇,朱丽,戚跃,贾文茹. 风沙区高速公路波形梁护栏附属设施影响下的气流变化及蚀积特征. 干旱区资源与环境. 2023(05): 155-161 .
    3. 吕帅元,田荣燕,万常兴,马仁跃. 常用护栏类型对风沙粒子运动的影响研究. 西藏科技. 2023(07): 74-80 .
    4. 张克存,安志山,何明珠,肖建华,张宏雪. 中国沙区公路风沙危害及防治研究进展. 中国沙漠. 2022(03): 222-232 .
    5. 李文辉. 风沙地区公路设计探讨. 科技创新与应用. 2021(13): 87-89 .
    6. 李生宇,范敬龙,王海峰,崔珂军,雷加强. 蒙古高原交通干线风沙(雪)危害防治技术方案. 干旱区研究. 2021(06): 1760-1770 .
    7. 菲力敦. 轮台至民丰沙漠公路设计. 时代汽车. 2020(20): 187-188 .

    Other cited types(3)

Catalog

    Article views (3169) PDF downloads (343) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return