• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yang Shu-juan, You Yan-zhi, Zhang Wei-wei, Wang Kun, Jiang Jian-xin. NaOH-ethanol pretreatment increasing preparation efficiency of xylo-oligosaccharide from sugarcane bagasse with enzymatic hydrolysis[J]. Journal of Beijing Forestry University, 2018, 40(2): 114-120. DOI: 10.13332/j.1000-1522.20170366
Citation: Yang Shu-juan, You Yan-zhi, Zhang Wei-wei, Wang Kun, Jiang Jian-xin. NaOH-ethanol pretreatment increasing preparation efficiency of xylo-oligosaccharide from sugarcane bagasse with enzymatic hydrolysis[J]. Journal of Beijing Forestry University, 2018, 40(2): 114-120. DOI: 10.13332/j.1000-1522.20170366

NaOH-ethanol pretreatment increasing preparation efficiency of xylo-oligosaccharide from sugarcane bagasse with enzymatic hydrolysis

More Information
  • Received Date: October 11, 2017
  • Revised Date: November 29, 2017
  • Published Date: January 31, 2018
  • ObjectiveThe condition of preparation of xylo-oligosaccharide (XOS) from sugarcane bagasse with enzymatic hydrolysis was investigated. In this study, the preparation efficiency of xylo-oligosaccharide was improved by NaOH-ethanol pretreatment.
    MethodFirstly, the chemical composition of the sugarcane bagasse before and after pretreatment was characterized, and the effect of pretreatment on the components of the raw material was determined. Secondly, the wettability and physical structure of substrates were characterized by contact angle analysis and X-ray diffraction (XRD). Finally, in order to compare the effects of different pretreatments on the mass concentration of XOS with enzymatic hydrolysis, the enzymatic hydrolysate was harvested and analyzed by high performance liquid chromatography (HPLC).
    ResultCharacterization results confirmed that optimal pretreatment condition was 10 g/L NaOH-ethanol (50% v/v ethanol) pretreatment. Under this pretreatment condition, a large amount of lignin was removed and the removal rate of lignin could reach 78.10%. Moreover, the pretreatment could effectively improve the hydrophilicity of raw materials, decreased the contact angle from 61.5° to 55.4°, and also increased the crystallinity of lignocellulose from 28.6% to 32.3%.The results showed that the highest XOS mass concentration was 1.85 g/L after 10 g/L NaOH-ethanol pretreatment, which was 122.89% higher than that of untreated sugarcane bagasse (0.83 g/L).
    ConclusionIn the process of XOS preparation from sugarcane bagasse, enzymatic hydrolysis was an efficient way to achieve the conversion from hemicellulose to XOS. NaOH-ethanol pretreatment can effectively increase the efficiency of enzymatic hydrolysis and promote the preparation of XOS.
  • [1]
    Chen M H, Bowman M J, Dien B S, et al. Autohydrolysis of Miscanthus×giganteus for the production of xylooligosaccharides (XOS): kinetics, characterization and recovery[J]. Bioresource Technology, 2014, 155(2): 359-365.
    [2]
    Shin J H, Choi J H, Lee O S, et al. Thermostable xylanase from Streptomyces thermocyaneoviolaceus for optimal production of xylooligosaccharides[J]. Biotechnology and Bioprocess Engineering, 2009, 14(4): 391-399. doi: 10.1007/s12257-008-0220-3
    [3]
    石波, 李里特.低聚木糖的制备与分离[J].食品工业科技, 2004, 25(7): 113-114. doi: 10.3969/j.issn.1002-0306.2004.07.045

    Shi B, Li L T. Study on the preparation and isolation of xylooligosacchrides[J]. Science and Technology of Food Industry, 2004, 25(7): 113-114. doi: 10.3969/j.issn.1002-0306.2004.07.045
    [4]
    Vallejos M E, Zambon M D, Area M C, et al. Low liquid-solid ratio (LSR) hot water pretreatment of sugarcane bagasse[J]. Green Chemistry, 2012, 14(7): 1982-1989. doi: 10.1039/c2gc35397k
    [5]
    Parajó J C, Garrote G, Cruz J M, et al. Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials[J]. Trends in Food Science & Technology, 2004, 15(3-4): 115-120. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004160294
    [6]
    Saha B C. Hemicellulose bioconversion[J]. Journal of Industrial Microbiology and Biotechnology, 2003, 30(5): 279-291. doi: 10.1007/s10295-003-0049-x
    [7]
    Pérez J, Muñoz-Dorado J, de la Rubia T, et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview[J]. International Microbiology, 2002, 5(2): 53-63. doi: 10.1007/s10123-002-0062-3
    [8]
    Xue J L, Zhao S, Liang R M, et al. A biotechnological process efficiently co-produces two high value-added products, glucose and xylooligosaccharides, from sugarcane bagasse[J]. Bioresource Technology, 2016, 204: 130-138. doi: 10.1016/j.biortech.2015.12.082
    [9]
    顾阳, 勇强, 余世袁.高温预处理对木聚糖酶水解制备低聚木糖的促进作用[J].林产化学与工业, 2006, 26(1): 6-10. doi: 10.3321/j.issn:0253-2417.2006.01.002

    Gu Y, Yong Q, Yu S Y. Promotional effect of high temperature pretreatment on enzymatic hydrolysis of xylan into xylooligosaccharide[J]. Chemistry and Industry of Forest Products, 2006, 26(1): 6-10. doi: 10.3321/j.issn:0253-2417.2006.01.002
    [10]
    Limayem A, Ricke S C. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects [J]. Progress in Energy and Combustion Science, 2012, 38(4): 449-467. doi: 10.1016/j.pecs.2012.03.002
    [11]
    秦书百川, 刘彦涛, 卜令习, 等.碱性亚硫酸盐耦合低压蒸汽预处理慈竹及其纤维素酶解转化[J].北京林业大学学报, 2016, 38(7): 98-104. doi: 10.13332/j.1000-1522.20150456

    Qin S B C, Liu Y T, Bu L X, et al. Alkaline sulfite and low-pressure steam coupled pretreatment on Neosinocalamus affinis and its enzymatic hydrolysis[J]. Journal of Beijing Forestry University, 2016, 38(7): 98-104. doi: 10.13332/j.1000-1522.20150456
    [12]
    Sluiter A, Hames B, Ruiz R, et al. Determination of structural carbohydrates and lignin in biomass[R]//NREL. Technical report NREL/TP-510-42618. Golden, Colorado, USA: National Renewable Energy Laboratory, 2012.
    [13]
    Yu H L, You Y Z, Lei F H, et al. Comparative study of alkaline hydrogen peroxide and organosolv pretreatments of sugarcane bagasse to improve the overall sugar yield[J]. Bioresource Technology, 2015, 187: 161-166. doi: 10.1016/j.biortech.2015.03.123
    [14]
    杨淑娟, 游艳芝, 卜令习, 等.废纸脱墨浆预处理及其酶解性能研究[J].生物质化学工程, 2016, 50(4): 37-41. doi: 10.3969/j.issn.1673-5854.2016.04.007

    Yang S J, You Y Z, Bu L X, et al. Pretreatment of waste paper pulp and enzymatic hydrolysis properties[J]. Biomass Chemical Engineering, 2016, 50(4): 37-41. doi: 10.3969/j.issn.1673-5854.2016.04.007
    [15]
    Aachary A A, Prapulla S G. Value addition to corncob: production and characterization of xylooligosaccharides from alkali pretreated lignin-saccharide complex using Aspergillus oryzae MTCC 5154[J]. Bioresource Technology, 2009, 100(2): 991-995. doi: 10.1016/j.biortech.2008.06.050
    [16]
    Morgan N K, Wallace A, Bedford M R, et al. Efficiency of xylanases from families 10 and 11 in production of xylo-oligosaccharides from wheat arabinoxylans[J]. Carbohydrate Polymers, 2017, 167: 290-296. doi: 10.1016/j.carbpol.2017.03.063
    [17]
    Azelee N I W, Jahim J M, Ismail A F, et al. High xylooligosaccharides (XOS) production from pretreated kenaf stem by enzyme mixture hydrolysis[J]. Industrial Crops and Products, 2016, 81: 11-19. doi: 10.1016/j.indcrop.2015.11.038
    [18]
    Si S L, Chen Y, Fan C F, et al. Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments[J]. Bioresource Technology, 2015, 183: 248-254. doi: 10.1016/j.biortech.2015.02.031
    [19]
    蒋建新, 杨中开, 朱莉伟, 等.竹纤维结构及其性能研究[J].北京林业大学学报, 2008, 30(1): 128-132. doi: 10.3321/j.issn:1000-1522.2008.01.023

    Jiang J X, Yang Z K, Zhu L W, et al. Structure and property of bamboo fiber[J]. Journal of Beijing Forestry University, 2008, 30(1): 128-132. doi: 10.3321/j.issn:1000-1522.2008.01.023
    [20]
    徐勇, 陈牧, 余世袁, 等.木聚糖酶水解制取低聚木糖的研究[J].林产化学与工业, 2002, 22(2): 57-60. doi: 10.3321/j.issn:0253-2417.2002.02.014

    Xu Y, Chen M, Yu S Y, et al. Study on enzymatic hydrolysis of xylan into xylo-oligosaccharide[J]. Chemistry and Industry of Forest Products, 2002, 22(2): 57-60. doi: 10.3321/j.issn:0253-2417.2002.02.014
    [21]
    蔡彦, 马玉龙, 谢丽, 等.不同预处理方法对麦草纤维素酶解效果的影响[J].可再生能源, 2010, 28(3): 72-74, 80. doi: 10.3969/j.issn.1671-5292.2010.03.016

    Cai Y, Ma Y L, Xie L, et al. Comparative study on pretreatment of wheat straw cellulose with compound method[J]. Renewable Energy Resources, 2010, 28(3): 72-74, 80. doi: 10.3969/j.issn.1671-5292.2010.03.016
    [22]
    叶利培, 房桂干, 沈葵忠, 等.木聚糖酶水解竹材废弃物制取低聚木糖工艺条件的优化[J].食品工业科技, 2013, 34(22): 141-144, 148. http://d.old.wanfangdata.com.cn/Periodical/spgykj201322033

    Ye L P, Fang G G, Shen K Z, et al. Optimization of xylo-oligosaccharides production by xylanase hydrolysis with bamboo wastes in processing[J]. Science and Technology of Food Industry, 2013, 34(22): 141-144, 148. http://d.old.wanfangdata.com.cn/Periodical/spgykj201322033
    [23]
    Yang S J, You Y Z, Li X L, et al. Effects of papermaking additives for effective hydrolysis of deinked waste paper[J]. Journal of Biobased Materials and Bioenergy, 2017, 11(2): 142-147. doi: 10.1166/jbmb.2017.1651
    [24]
    Reilly P J. Xylanases: structure and function[M]//Hollaender A, Rabson R, Rogers P, et al. Trends in the biology of fermentations for fuels and chemicals. Boston: Springer, 1981: 111-129.
    [25]
    Kumar S, Gupta R, Lee Y Y, et al. Cellulose pretreatment in subcritical water: effect of temperature on molecular structure and enzymatic reactivity[J]. Bioresource Technology, 2010, 101(4): 1337-1347. doi: 10.1016/j.biortech.2009.09.035
    [26]
    Yu H L, Tang Y, Xing Y, et al. Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green liquor and hydrogen peroxide[J]. Bioresource Technology, 2013, 147: 29-36. doi: 10.1016/j.biortech.2013.08.013
    [27]
    Zhao C, Ma Z Q, Shao Q J, et al. Enzymatic hydrolysis and physiochemical characterization of corn leaf after H-AFEX pretreatment[J]. Energy & Fuels, 2016, 30(2): 1154-1161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1e9e1185bfc0fcae841d56a9694a79d6
    [28]
    周玉恒, 陈海珊, 蔡爱华, 等.蒸汽爆破对甘蔗叶酶法制备低聚木糖的影响[J].食品与发酵工业, 2011, 37(2): 94-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spyfx201102021

    Zhou Y H, Chen H S, Cai A H, et al. The influence of steam explosion on enzymatic preparation of xylooligosaccharides from sugarcane leaves[J]. Food and Fermentation Industries, 2011, 37(2): 94-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spyfx201102021
    [29]
    田龙, 王云, 马晓建.小麦秸秆酶法制备低聚木糖及其抗氧化活性[J].食品科学, 2014, 35(20): 88-92. doi: 10.7506/spkx1002-6630-201420018

    Tian L, Wang Y, Ma X J. Preparation and antioxidant activity of xylooligosaccharides from wheat straw by enzymatic hydrolysis with xylanase[J]. Food Science, 2014, 35(20): 88-92. doi: 10.7506/spkx1002-6630-201420018
    [30]
    Jiang Z Q, Deng W, Zhu Y P, et al. The recombinant xylanase B of Thermotoga maritima is highly xylan specific and produces exclusively xylobiose from xylans, a unique character for industrial applications[J]. Journal of Molecular Catalysis B: Enzymatic, 2004, 27(4-6): 207-213. doi: 10.1016/j.molcatb.2003.11.012
  • Related Articles

    [1]Shen Xihuan, Li Huafeng, Zhao Shejiao, Ma Jianwei, Li Shujing, Wang Jun. Investigation and analysis of seedling and experiment plantation of 40 half-sib-families from 4 seed provenances of Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2022, 44(4): 47-53. DOI: 10.12171/j.1000-1522.20210243
    [2]Zhou Hongxin, Didar Xerdiman, Li Shaocai, Sun Hailong, Tan Changming, Wang Xiaowen, Xia Min. Experiment on shrub spray sowing technology in limestone dreg field[J]. Journal of Beijing Forestry University, 2022, 44(1): 87-93. DOI: 10.12171/j.1000-1522.20210187
    [3]Meng Zhaoxin, Cao Jiajia, Zhu Li, Ma Jingyao, Shi Jinsong. Kinetics analysis and strategy of compensation control study for feeding platform of curve saw for wood[J]. Journal of Beijing Forestry University, 2020, 42(2): 159-166. DOI: 10.12171/j.1000-1522.20190234
    [4]Wang Yuanming, Zhang Fangyu, Yang Xuechun, Wang Lihai, Dong Zengchuan. Wave elimination mechanism of wavebreak forest by physical experiments in Baidajie Dike, Nenjiang River of northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(10): 121-127. DOI: 10.13332/j.1000-1522.20180035
    [5]Li Xiang, Wang Yaming, Meng Chen, Li Jiao, Niu Jianzhi. A dynamic crown interception model based on simulated rainfall experiments of small trees[J]. Journal of Beijing Forestry University, 2018, 40(4): 43-50. DOI: 10.13332/j.1000-1522.20170348
    [6]WANG Chao, WANG Dong-mei, LI Yong-hong, ZHANG Yan, LAI Wen-hao. Introduction experiment of bio-energy plant Xanthoceras sorbifolia in the gully region of the loess tableland residue in Shanxi Province,northern China.[J]. Journal of Beijing Forestry University, 2013, 35(3): 90-96.
    [7]LI Yan-jie, XU Chen, LU Yuan-jia, ZHAO Dong. Finite element analysis and experiments on the drill of earth auger[J]. Journal of Beijing Forestry University, 2013, 35(2): 112-117.
    [8]ZHANG Jun-mei, LI Wen-bin, SA Chao, WANG De-ming. Motion control system of remote control pruning robot for standing trees[J]. Journal of Beijing Forestry University, 2007, 29(4): 33-36. DOI: 10.13332/j.1000-1522.2007.04.008
    [9]ZHANG Jun-mei, LI Wen-bin, SA Chao, WANG De-ming. Power control system of remote control pruning robot for standing trees[J]. Journal of Beijing Forestry University, 2007, 29(4): 22-26. DOI: 10.13332/j.1000-1522.2007.04.006
    [10]WANG An-zhi, LIU Jian-mei, PEI Tie-fan, JIN Chang-jie. An experiment and model construction of rainfall interception by Picea koraiensis[J]. Journal of Beijing Forestry University, 2005, 27(2): 38-42.
  • Cited by

    Periodical cited type(11)

    1. 杨涛,孙付春,黄波,吴柏强,冉光泽. 果园作业平台关键技术研究进展. 中国农机化学报. 2024(01): 152-159 .
    2. 汪若尘,蒋亦勇,丁仁凯,孙泽宇,徐可. 基于BP神经网络PID的机电式作业机全向调平控制. 农业工程学报. 2024(23): 52-62 .
    3. 姜欢龙,严重勇,李青涛,梁丽,李佳阳,谭芸颖. 自走式农业机械静态稳定性研究现状及展望. 西华大学学报(自然科学版). 2023(01): 32-41 .
    4. 聂昭成,罗红品,刘威,李光林. 丘陵山地作物信息采集全向自平衡装置的设计与试验. 西南大学学报(自然科学版). 2023(10): 129-138 .
    5. 蒋俞,孙泽宇,汪若尘,夏长高,叶青,郭逸凡. 丘陵山区履带式作业机全向调平系统设计与性能试验. 农业工程学报. 2023(18): 64-73 .
    6. 孙泽宇,夏长高,蒋俞,郭逸凡,汪若尘. 基于QBP-PID的履带式作业机全向调平控制研究. 农业机械学报. 2023(12): 397-406 .
    7. 姜彪,付友,郭靖,张海林,马新华. 煤矿抢险移动式自动调平搭载平台控制系统. 煤矿机械. 2022(04): 181-185 .
    8. 张翠英,仪垂良,刘学峰,任冬梅,张成保. 基于CAN总线的悬浮式转向驱动桥电气控制系统设计. 农业装备与车辆工程. 2021(05): 1-5 .
    9. 缪友谊,陈小兵,朱继平,袁栋,陈伟,丁艳. 果园作业平台研究进展分析. 中国农机化学报. 2021(06): 41-49 .
    10. 李林林,邓干然,林卫国,崔振德,何冯光,李国杰. 农业机械自动调平技术发展现状与趋势. 现代农业装备. 2021(05): 2-7+35 .
    11. 吕昊暾,胡召田,于泳超,康峰,郑永军. 果园高位作业平台自动调平前馈PID控制方法. 农业工程学报. 2021(18): 20-28 .

    Other cited types(5)

Catalog

    Article views (2037) PDF downloads (64) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return