• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Hu Jing, Chen Zhibo, Yang Meng, Zhang Rongguo, Cui Yaji. Plant leaf segmentation method based on fully convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(11): 131-136. DOI: 10.13332/j.1000-1522.20180007
Citation: Hu Jing, Chen Zhibo, Yang Meng, Zhang Rongguo, Cui Yaji. Plant leaf segmentation method based on fully convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(11): 131-136. DOI: 10.13332/j.1000-1522.20180007

Plant leaf segmentation method based on fully convolutional neural network

More Information
  • Received Date: January 03, 2018
  • Revised Date: September 09, 2018
  • Published Date: October 31, 2018
  • ObjectivePlant leaf segmentation aims to segment leaf regions from backgrounds for removing background object interferes, which is important for plant disease recognition and species identification.
    MethodIn this paper, a fully convolutional neural network (FCNN) was designed for plant leaf image segmentation. First, a log-logic function as objective function replaces the complex Softmax function, which transforms the segmentation task into a binary classification problem suitable for plant leaf segmentation. Second, the batch normalization (BN) technology was introduced into the FCNN, which improved the convergence of the whole FCNN. Finally, due to the lack of evaluation index in the research of plant leaf segmentation, receiver operating characteristic (ROC) curve, as a new evaluation protocol, was designed. It reflected the changes between recall rate and false alarm rate of plant leaf segmentation under different threshold settings.
    ResultThe method reduced the complexity of parameters and improved the convergence performance of FCNN. Experimental results showed that this method was more complete to segment the leaf image than the color-based method in Leafsnap. The proposed ROC curve adequately evaluated the performance of plant leaf segmentation.
    ConclusionCompared with traditional plant leaf segmentation methods, the proposed method based on deep learning realizes input image by end to end processing, and does not require pre-processing like image conversion, noise filter and morphological operations, etc. Therefore, this method can be used for leaf segmentation.
  • [1]
    Cope J S, Corney D, Clark J Y, et al.Plant species identification using digital morphometrics:a review[J].Expert Systems with Applications, 2012, 39(8):7562-7573. doi: 10.1016/j.eswa.2012.01.073
    [2]
    Clarke J, Barman S, Remagnino P, et al.Venation pattern analysis of leaf images[C]//Bebis G, Boyle R, Parvin B, et al.Advances in visual computing: part Ⅱ. Berlin: Springer, 2006: 427-436.
    [3]
    Kumar N, Belhumeur P N, Biswas A, et al.Leafsnap: a computer vision system for automatic plant species identification[C]//Fitzgibbon A, Lazebnik S, Perona P, et al. Computer vision: ECCV 2012. Berlin: Springer, 2012: 502-516.
    [4]
    Wang X F, Huang D S, Du J X, et al.Classification of plant leaf images with complicated background[J].Applied Mathematics & Computation, 2008, 205(2):916-926. http://cs231n.stanford.edu/reports/2017/pdfs/325.pdf
    [5]
    Lee S H, Chan C S, Wilkin P, et al.Deep-plant: plant identification with convolutional neural networks[C]//Proccedings of IEEE International Conference on Image Processing.Piscataway: IEEE Signal Processing Society, 2015: 452-456.
    [6]
    Kavitha P, Ananthi B.Segmentation of unhealthy region of plant leaf using image processing techniques:a survey[J].International Journal of Research in Engineering and Technology, 2014, 11(3):24-27. https://ieeexplore.ieee.org/document/7164858/
    [7]
    Boykov Y, Funka-Lea G. Graph cuts and efficient N-D image segmentation[J].International Journal of Computer Vision, 2006, 70(2):109-131. doi: 10.1007/s11263-006-7934-5
    [8]
    Shi J, Malik J. Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. doi: 10.1109/34.868688
    [9]
    Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm[J].IEEE Transactions on Medical Imaging, 2001, 20(1):45-57. doi: 10.1109/42.906424
    [10]
    Valliammal N, Geethalakshmi S N. A novel approach for plant leaf image segmentation using fuzzy clustering[J].International Journal of Computer Applications, 2012, 44(13):10-20. doi: 10.5120/6322-8669
    [11]
    Valliammal N, Geethalakshmi S N. Leaf image segmentation based on the combination of wavelet transform and k means clustering[J].International Journal of Advanced Research in Artificial Intelligence, 2012, 1(3):25-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003577404
    [12]
    Shelhamer E, Long J, Darrell T, et al.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. doi: 10.1109/TPAMI.2016.2572683
    [13]
    张帅, 淮永建.基于分层卷积深度学习系统的植物叶片识别研究[J].北京林业大学学报, 2016, 38(9):108-115. http://bjly.chinajournal.net.cn/WKC/WebPublication/paperDigest.aspx?paperID=94fda7a0-37de-449e-bcb0-bfb6a7916e6c

    Zhang S, Huai Y J.Leaf image recognition based on layered convolutions neural network deep learning[J].Journal of Beijing Forestry University, 2016, 38(9):108-115. http://bjly.chinajournal.net.cn/WKC/WebPublication/paperDigest.aspx?paperID=94fda7a0-37de-449e-bcb0-bfb6a7916e6c
    [14]
    Noh H, Hong S, Han B.Learning deconvolution network for semantic segmentation[C/OL]//Proceedings of IEEE International Conference on Computer Vision. Washington D C: IEEE Computer Society, 2015[2017-10-10]. https://arxiv.org/pdf/1505.04366.pdf.
    [15]
    Chen L C, Papandreou G, Kokkinos I, et al.Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. doi: 10.1109/TPAMI.2017.2699184
    [16]
    Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Pereira F, Burges C J C, Bottou L, et al. Advances in neural information processing systems. New York: Curran Associates Inc., 2012: 1097-1105.
    [17]
    Ioffe S, Szegedy C.Batch normalization: accelerating deep network training by reducing internal covariate shift[C/OL]. ICML'15 Proccedings of the 32nd International Conference on Machine Learning, 2015, 37: 448-456[2017-09-20]. https://arxiv.org/pdf/1502.03167.pdf.
  • Related Articles

    [1]Xu Pengfei, Zhang Houjiang, Xin Zhenbo, Yuan Jiangyu. Numerical simulation of neutral axis in transverse bending of tree trunk[J]. Journal of Beijing Forestry University, 2024, 46(8): 1-14. DOI: 10.12171/j.1000-1522.20240073
    [2]Xing Yuhua, Zhang Dapeng, Li Siying, Wang Pei. Integration and simulation analysis of temperature gradient based 3T and resistance-based evapotranspiration model[J]. Journal of Beijing Forestry University, 2024, 46(4): 115-126. DOI: 10.12171/j.1000-1522.20230198
    [3]Liu Haozheng, Wang Jianshan, Shi Guangyu. Effects of microfibril helix angle in the S2 layer of compression wood cell wall on the compressive toughness of it[J]. Journal of Beijing Forestry University, 2023, 45(4): 136-146. DOI: 10.12171/j.1000-1522.20220506
    [4]Zhang Xingxin, Zhang Kai, Zhao Liming, Deng Yuhui, Deng Lijia. Numerical simulation on wind-sand flow field at the bridge and roadbed transition section of Golmud-Korla Railway in northwestern China[J]. Journal of Beijing Forestry University, 2022, 44(2): 75-81. DOI: 10.12171/j.1000-1522.20210213
    [5]Yu Yongzhu, Guan Cheng, Zhang Houjiang, Yao Xiaorui, Zhang Dian, Xin Zhenbo. Numerical simulation on the influence of wall wood column defects on the safety of ancient building[J]. Journal of Beijing Forestry University, 2022, 44(1): 132-145. DOI: 10.12171/j.1000-1522.20210341
    [6]Liu Fangni, Yin Hao, Zhou Xu. Numerical simulation study on the influence of greening between buildings on sunlight conditions of building in residential area[J]. Journal of Beijing Forestry University, 2020, 42(12): 101-114. DOI: 10.12171/j.1000-1522.20200039
    [7]Ou Zina, Zhang Houjiang, Guan Cheng. Numerical simulation of the safety influence of defects on Qijia-beams of ancient timber building[J]. Journal of Beijing Forestry University, 2020, 42(4): 142-154. DOI: 10.12171/j.1000-1522.20190328
    [8]LI Yan-jie, XU Chen, LU Yuan-jia, ZHAO Dong. Finite element analysis and experiments on the drill of earth auger[J]. Journal of Beijing Forestry University, 2013, 35(2): 112-117.
    [9]HAO Yan-hua, ZHANG Xiang-xue, DING Xiao-kang, LIU Jiao. Analysis and measurement of ultrasonic acoustic emissions from the cavitation in xylem sap.[J]. Journal of Beijing Forestry University, 2012, 34(3): 36-40.
    [10]YANG Xue, CHEN Guang-yuan, FENG Li-ning, LI Jian-rong. Investigation of airflow uniformity at air-exchange device in drying kiln by numerical simulation[J]. Journal of Beijing Forestry University, 2011, 33(4): 113-117.
  • Cited by

    Periodical cited type(7)

    1. 高斯远,曹广超,刁二龙,何启欣,程梦园,邱巡巡,程国,赵美亮. 盛行风作用下柴木达盆地典型多花柽柳灌丛资源岛特征. 水土保持通报. 2022(04): 293-300 .
    2. 董正武,李生宇,毛东雷,雷加强. 古尔班通古特沙漠西南缘柽柳沙包土壤粒度分布特征. 水土保持学报. 2021(04): 64-72+79 .
    3. 王永兵,李亚萍. 古尔班通古特沙漠南缘梭梭固沙林土壤粒度的分异规律. 水土保持通报. 2020(03): 75-80 .
    4. 杨异婷. 坡度及旅游干扰对土壤粒度特征的影响. 绿色科技. 2019(02): 12-16 .
    5. 张帅,丁国栋,高广磊,赵媛媛,于明含,包岩峰,王春媛. 风沙区公路防积沙的新型防护栏研究. 北京林业大学学报. 2018(02): 90-97 . 本站查看
    6. 谭凤翥,王雪芹,王海峰,徐俊荣,袁鑫鑫. 柽柳灌丛沙堆及丘间地蚀积分布随背景植被变化的风洞实验. 干旱区地理. 2018(01): 56-65 .
    7. 安志山,张克存,谭立海,蔡迪文,张余. 论沙漠-绿洲过渡带的风沙防护效应. 干旱区研究. 2017(05): 1196-1202 .

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return