• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Hu Jing, Chen Zhibo, Yang Meng, Zhang Rongguo, Cui Yaji. Plant leaf segmentation method based on fully convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(11): 131-136. DOI: 10.13332/j.1000-1522.20180007
Citation: Hu Jing, Chen Zhibo, Yang Meng, Zhang Rongguo, Cui Yaji. Plant leaf segmentation method based on fully convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(11): 131-136. DOI: 10.13332/j.1000-1522.20180007

Plant leaf segmentation method based on fully convolutional neural network

More Information
  • Received Date: January 03, 2018
  • Revised Date: September 09, 2018
  • Published Date: October 31, 2018
  • ObjectivePlant leaf segmentation aims to segment leaf regions from backgrounds for removing background object interferes, which is important for plant disease recognition and species identification.
    MethodIn this paper, a fully convolutional neural network (FCNN) was designed for plant leaf image segmentation. First, a log-logic function as objective function replaces the complex Softmax function, which transforms the segmentation task into a binary classification problem suitable for plant leaf segmentation. Second, the batch normalization (BN) technology was introduced into the FCNN, which improved the convergence of the whole FCNN. Finally, due to the lack of evaluation index in the research of plant leaf segmentation, receiver operating characteristic (ROC) curve, as a new evaluation protocol, was designed. It reflected the changes between recall rate and false alarm rate of plant leaf segmentation under different threshold settings.
    ResultThe method reduced the complexity of parameters and improved the convergence performance of FCNN. Experimental results showed that this method was more complete to segment the leaf image than the color-based method in Leafsnap. The proposed ROC curve adequately evaluated the performance of plant leaf segmentation.
    ConclusionCompared with traditional plant leaf segmentation methods, the proposed method based on deep learning realizes input image by end to end processing, and does not require pre-processing like image conversion, noise filter and morphological operations, etc. Therefore, this method can be used for leaf segmentation.
  • [1]
    Cope J S, Corney D, Clark J Y, et al.Plant species identification using digital morphometrics:a review[J].Expert Systems with Applications, 2012, 39(8):7562-7573. doi: 10.1016/j.eswa.2012.01.073
    [2]
    Clarke J, Barman S, Remagnino P, et al.Venation pattern analysis of leaf images[C]//Bebis G, Boyle R, Parvin B, et al.Advances in visual computing: part Ⅱ. Berlin: Springer, 2006: 427-436.
    [3]
    Kumar N, Belhumeur P N, Biswas A, et al.Leafsnap: a computer vision system for automatic plant species identification[C]//Fitzgibbon A, Lazebnik S, Perona P, et al. Computer vision: ECCV 2012. Berlin: Springer, 2012: 502-516.
    [4]
    Wang X F, Huang D S, Du J X, et al.Classification of plant leaf images with complicated background[J].Applied Mathematics & Computation, 2008, 205(2):916-926. http://cs231n.stanford.edu/reports/2017/pdfs/325.pdf
    [5]
    Lee S H, Chan C S, Wilkin P, et al.Deep-plant: plant identification with convolutional neural networks[C]//Proccedings of IEEE International Conference on Image Processing.Piscataway: IEEE Signal Processing Society, 2015: 452-456.
    [6]
    Kavitha P, Ananthi B.Segmentation of unhealthy region of plant leaf using image processing techniques:a survey[J].International Journal of Research in Engineering and Technology, 2014, 11(3):24-27. https://ieeexplore.ieee.org/document/7164858/
    [7]
    Boykov Y, Funka-Lea G. Graph cuts and efficient N-D image segmentation[J].International Journal of Computer Vision, 2006, 70(2):109-131. doi: 10.1007/s11263-006-7934-5
    [8]
    Shi J, Malik J. Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. doi: 10.1109/34.868688
    [9]
    Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm[J].IEEE Transactions on Medical Imaging, 2001, 20(1):45-57. doi: 10.1109/42.906424
    [10]
    Valliammal N, Geethalakshmi S N. A novel approach for plant leaf image segmentation using fuzzy clustering[J].International Journal of Computer Applications, 2012, 44(13):10-20. doi: 10.5120/6322-8669
    [11]
    Valliammal N, Geethalakshmi S N. Leaf image segmentation based on the combination of wavelet transform and k means clustering[J].International Journal of Advanced Research in Artificial Intelligence, 2012, 1(3):25-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003577404
    [12]
    Shelhamer E, Long J, Darrell T, et al.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. doi: 10.1109/TPAMI.2016.2572683
    [13]
    张帅, 淮永建.基于分层卷积深度学习系统的植物叶片识别研究[J].北京林业大学学报, 2016, 38(9):108-115. http://bjly.chinajournal.net.cn/WKC/WebPublication/paperDigest.aspx?paperID=94fda7a0-37de-449e-bcb0-bfb6a7916e6c

    Zhang S, Huai Y J.Leaf image recognition based on layered convolutions neural network deep learning[J].Journal of Beijing Forestry University, 2016, 38(9):108-115. http://bjly.chinajournal.net.cn/WKC/WebPublication/paperDigest.aspx?paperID=94fda7a0-37de-449e-bcb0-bfb6a7916e6c
    [14]
    Noh H, Hong S, Han B.Learning deconvolution network for semantic segmentation[C/OL]//Proceedings of IEEE International Conference on Computer Vision. Washington D C: IEEE Computer Society, 2015[2017-10-10]. https://arxiv.org/pdf/1505.04366.pdf.
    [15]
    Chen L C, Papandreou G, Kokkinos I, et al.Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. doi: 10.1109/TPAMI.2017.2699184
    [16]
    Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Pereira F, Burges C J C, Bottou L, et al. Advances in neural information processing systems. New York: Curran Associates Inc., 2012: 1097-1105.
    [17]
    Ioffe S, Szegedy C.Batch normalization: accelerating deep network training by reducing internal covariate shift[C/OL]. ICML'15 Proccedings of the 32nd International Conference on Machine Learning, 2015, 37: 448-456[2017-09-20]. https://arxiv.org/pdf/1502.03167.pdf.
  • Related Articles

    [1]Liu Lipan, Yang Aihong, Liu Tengyun, Zhong Yongda, Zhou Hua, Yu Faxin. Cloning, subcellular localization and expression analysis of telomere genes CcTBP1 and CcPOT1 in ancient Cinnamomum camphora[J]. Journal of Beijing Forestry University, 2022, 44(12): 1-11. DOI: 10.12171/j.1000-1522.20210179
    [2]Hao Yingying, Zhou Mingzhu, Han Kaiyuan, Yang Xiong, Gao Yuhan, Chen Zhong. Cloning and expression analysis of three members of PtYABBYs in Populus tomentosa[J]. Journal of Beijing Forestry University, 2022, 44(1): 48-57. DOI: 10.12171/j.1000-1522.20210277
    [3]Lin Jiancong, Sun Yue, Liu Yonglong, Wang Jinda, Wang Rong, Zhang Feiping. Cloning and expression analysis of APN1 gene from Lymantria xylina[J]. Journal of Beijing Forestry University, 2021, 43(9): 94-100. DOI: 10.12171/j.1000-1522.20210186
    [4]CAO Shan, JIANG Lu-yao, LI Li-hong, YAO Xiao-yun, ZHANG Qiang, HAN Jing-yi, WANG Ying, LI Hui, LU Hai.. Cloning and enzymatic analysis of medium-chain acyl coenzyme A synthetase in Populus trichocarpa.[J]. Journal of Beijing Forestry University, 2016, 38(7): 9-15. DOI: 10.13332/j.1000-1522.20160121
    [5]GUO Peng, ZHANG Shi-gang, XING Xin, JIANG Jian. Cloning and function analysis of PdPP2C from Populus deltoides[J]. Journal of Beijing Forestry University, 2015, 37(2): 100-106. DOI: 10.13332/j.cnki.jbfu.2015.02.018
    [6]SHI Yu-bo, ZHANG Di, SHEN Xiao-hui, WANG Ling, ZHUO Li-huan. Molecular cloning and expression pattern analysis of a CONSTANS homolog from Agapanthus praecox ssp. orientalis.[J]. Journal of Beijing Forestry University, 2014, 36(4): 113-120. DOI: 10.13332/j.cnki.jbfu.2014.04.021
    [7]PAN Xiang, LI Na, LI Yin-jun, WEI Hong-yi, ZHANG Lei, LU Hai. Cloning expression and characterization of an ascorbate peroxidase gene PtAPX2 from Populus tomentosa.[J]. Journal of Beijing Forestry University, 2013, 35(1): 36-44.
    [8]LIU Jun-mei, LI Hao, CUI Dong-qing, YE Mei-xia, SPAN lang, US style, pt solid, solid windowtext, ZHANG Zhi-yi, AN Xin-min. Isolation labA-like1 gene from Populus tomentosa: expression of PtlabA-like1 in P. tomentosa and construction of expression vector[J]. Journal of Beijing Forestry University, 2011, 33(4): 55-62.
    [9]LIAN Qing-long, HAN Hao-jun, XIN Hai-bo, CHEN Li, HU Xiao-yan, HE Xiu-li, YI Ming-fang. Cloning and expression of GhAOS gene from Gladiolus hybridus[J]. Journal of Beijing Forestry University, 2011, 33(2): 77-83.
    [10]ZHANG Xing-yao, TAN Qing-feng, HE Wei, LIANG Jun, LIU Hui-xiang. Cloning and sequence analysis on cDNA of cysteine proteinase inhibitor gene from Populus tomentosa Carr[J]. Journal of Beijing Forestry University, 2007, 29(6): 23-28. DOI: 10.13332/j.1000-1522.2007.06.010
  • Cited by

    Periodical cited type(3)

    1. 孙媛媛,陈佳宁,倪涛,任昊杰,蔡鹏宁,彭显程,张飞萍,王荣. 木毒蛾钙黏蛋白基因的克隆及其表达与结构特点分析. 福建农林大学学报(自然科学版). 2025(01): 17-25 .
    2. 陈佳宁,孙媛媛,任昊杰,孙悦,刘用垄,左城,王荣. 木毒蛾成虫触角感器超微结构观察. 福建农林大学学报(自然科学版). 2023(04): 445-449 .
    3. 孙悦,刘用垄,孙媛媛,任昊杰,陈佳宁,张飞萍,王荣. 木毒蛾蛹性别的快速鉴定. 福建农林大学学报(自然科学版). 2023(05): 628-631 .

    Other cited types(1)

Catalog

    Article views (4293) PDF downloads (69) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return