• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Song Bo, Li Fengri, Dong Lihu, Zhou Yifei. Additive system of biomass equations for planted Populus simonii × P. nigra in western Heilongjiang Province of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(11): 58-68. DOI: 10.13332/j.1000-1522.20180062
Citation: Song Bo, Li Fengri, Dong Lihu, Zhou Yifei. Additive system of biomass equations for planted Populus simonii × P. nigra in western Heilongjiang Province of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(11): 58-68. DOI: 10.13332/j.1000-1522.20180062

Additive system of biomass equations for planted Populus simonii × P. nigra in western Heilongjiang Province of northeastern China

More Information
  • Received Date: February 25, 2018
  • Revised Date: October 08, 2018
  • Published Date: October 31, 2018
  • ObjectiveForest biomass, the foundation of researching many forestry and ecology problems, is a basic quantity character of the forest ecological system. Thus, accurate measurement of biomass and carbon is very important. Developing biomass models is a major way to biomass estimation. Based on the data of biomass for Populus simonii × P. nigra, we established three additive systems of individual tree biomass equations, i.e., the additive system of biomass equations based on one-variable models, the additive system of biomass equations based on two-variable models, the best additive system of biomass equations based on multiple-variable models. These provided technical and theoretical support for accounting and monitoring the Chinese forest biomass and carbon stock.
    MethodThe aggregation system was used to establish the individual tree biomass additive models, and nonlinear seemly unrelated regression was used to estimate the parameters in the additive system of biomass equations. The individual tree biomass model validation was accomplished by Jackknifing technique in this study.
    ResultTree biomass models using diameter at breast height (D) as the sole predictor are simple in model structure, and have higher prediction precision. Adding tree height (H) and crown attributes (crown width (CW) and crown length (CL)) as the additional predictors into biomass equations can significantly improve the model fitting and predictive ability, especially for predicting branch, foliage and crown biomass. The model fitting results showed that three additive systems of individual tree biomass equations fitted the data well, of which the adjusted coefficient of determination (Ra2) of biomass additive systems was all above 0.81, the mean relative error (ME) was between -1.0%-10.0%, the mean absolute relative error (MAE) was less than 25%, and all models for total and component biomass had the good prediction precision (more than 85%). Most biomass equations of the additive system based on multiple-variable models produced better model fitting than those of the additive system based D and the additive system based D and H.
    ConclusionIn order to estimate biomass model parameters more effectively, the additive property of estimating tree total, sub-totals, and component biomass should be taken into account. Although obtaining crown attributes is costly in terms of labor and time, the additive system of biomass equations based on the best models is very useful in conjunction with individual growth models to accurately predict biomass in response to changes in stand condition. Overall, the biomass models would be suitable for predicting individual tree biomass and carbon of planted Populus simonii × P. nigra.
  • [1]
    Clark D A, Brown S, Kicklighter D W, et al. Measuring net primary production in forests: concepts and field methods[J]. Ecological Applications, 2001, 11: 356-370. doi: 10.1890/1051-0761(2001)011[0356:MNPPIF]2.0.CO;2
    [2]
    Bond-Lamberty B, Wang C, Gower S T. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba[J]. Canadian Journal of Forest Research, 2002, 32: 1441-1450. doi: 10.1139/x02-063
    [3]
    王效科, 冯宗炜, 欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报, 2011, 12(1): 13-16. http://d.old.wanfangdata.com.cn/Periodical/yystxb200101003

    Wang X K, Feng Z W, Ouyang Z Y. Vegetation carbon storage and density of forest ecosystems in China[J]. Chinese Journal of Applied Ecology, 2011, 12(1): 13-16. http://d.old.wanfangdata.com.cn/Periodical/yystxb200101003
    [4]
    李世东, 胡淑萍, 唐小明.森林植被碳储量动态变化研究[M].北京:科学出版社, 2013.

    Li S D, Hu S P, Tang X M. The dynamics of forest carbon storage[M]. Beijing: Science Press, 2013.
    [5]
    Bi H, Turner J, Lambert M J. Additive biomass equations for native eucalypt forest trees of temperate Australia[J]. Trees, 2004, 18: 467-479. doi: 10.1007-s00468-004-0333-z/
    [6]
    Wang C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222: 9-16. doi: 10.1016/j.foreco.2005.10.074
    [7]
    Jenkins J C, Chojnacky D C, Heath L S, et al. National-scale biomass estimators for United States tree species[J]. Forest Science, 2003, 49: 12-35.
    [8]
    Lambert M C, Ung C H, Raulier F. Canadian national tree aboveground biomass equations[J]. Canadian Journal of Forest Research, 2005, 3: 1996-2018. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ022241542/
    [9]
    Dong L, Zhang L, Li F. A compatible system of biomass equations for three conifer species in Northeast, China[J]. Forest Ecology and Management, 2014, 329: 306-317. doi: 10.1016/j.foreco.2014.05.050
    [10]
    Dong L, Zhang L, Li F. Developing additive systems of biomass equations for nine hardwood species in Northeast China[J]. Trees, 2015, 29: 1149-1163. doi: 10.1007/s00468-015-1196-1
    [11]
    Zhao D, Kane M, Teskey R, et al. Modeling aboveground biomass components and volume-to-weight conversion ratios for loblolly pine trees[J]. Forest Science, 2016, 62: 463-473. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e462a822ecd95df3349c350904b01d60
    [12]
    Parresol B R. Additivity of nonlinear biomass equations[J]. Canadian Journal of Forest Research, 2001, 31: 865-878. doi: 10.1139/x00-202
    [13]
    唐守正, 张会儒, 胥辉.相容性生物量模型的建立及其估计方法研究[J].林业科学, 2000, 36(增刊1): 19-27. http://d.old.wanfangdata.com.cn/Periodical/lykx2000Z1003

    Tang S Z, Zhang H R, Xu H. Study on establish and estimate method of compatible biomass model[J]. Scientia Silvae Sinicae, 2000, 36(Suppl.1): 19-27. http://d.old.wanfangdata.com.cn/Periodical/lykx2000Z1003
    [14]
    符利勇, 雷渊才, 曾伟生.几种相容性生物量模型及估计方法的比较[J].林业科学, 2014, 50(6): 42-54. http://d.old.wanfangdata.com.cn/Periodical/lykx201406006

    Fu L Y, Lei Y C, Zeng W S. Comparison of several compatible biomass models and estimation approaches[J]. Scientia Silvae Sinicae, 2014, 50(6): 42-54. http://d.old.wanfangdata.com.cn/Periodical/lykx201406006
    [15]
    董利虎, 李凤日, 宋玉文.东北林区4个天然针叶树种单木生物量模型误差结构及可加性模型[J].应用生态学报, 2015, 26(3): 704-714. http://d.old.wanfangdata.com.cn/Periodical/yystxb201503009

    Dong L H, Li F R, Song Y W. Error structure and additivity of individual tree biomass model for four natural conifer species in Northeast China[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 704-714. http://d.old.wanfangdata.com.cn/Periodical/yystxb201503009
    [16]
    Dong L, Zhang L, Li F. A three-step proportional weighting system of nonlinear biomass equations[J]. Forest Science, 2015, 61: 35-45. doi: 10.5849/forsci.13-193
    [17]
    Zeng W S, Duo H R, Lei X D, et al. Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China[J]. European Journal of Forest Research, 2017, 136: 1-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3601ef0d50cab1cd289d12be4acfb3df
    [18]
    符利勇, 雷渊才, 孙伟, 等.不同林分起源的相容性生物量模型构建[J].生态学报, 2014, 34(6):1461-1470. http://d.old.wanfangdata.com.cn/Periodical/stxb201406015

    Fu L Y, Lei Y C, Sun W, et al. Development of compatible biomass models for trees from different stand origin[J]. Acta Ecologica Sinica, 2014, 34(6):1461-1470. http://d.old.wanfangdata.com.cn/Periodical/stxb201406015
    [19]
    曾伟生, 唐守正.东北落叶松和南方马尾松地下生物量模型研建[J].北京林业大学学报, 2011, 33(2):1-6. doi: 10.3969/j.issn.1671-6116.2011.02.001

    Zeng W S, Tang S Z. Establishment of below-ground biomass equations for larch in northeastern and Masson pine in southern China[J]. Journal of Beijing Forestry University, 2011, 33(2):1-6. doi: 10.3969/j.issn.1671-6116.2011.02.001
    [20]
    Tang S, Li Y, Wang Y. Simultaneous equations, error-in-variable models, and model integration in systems ecology[J]. Ecological Modelling, 2001, 142: 285-294. doi: 10.1016/S0304-3800(01)00326-X
    [21]
    Fu L Y, Zeng W S, Tang S Z. Individual tree biomass models to estimate forest biomass for large spatial regions developed using four pine species in China[J]. Forest Science, 2017, 63: 241-249. doi: 10.5849/FS-2016-055
    [22]
    Wang X, Bi H, Ximenes F, et al. Product and residue biomass equations for individual trees in rotation age pinus radiata stands under three thinning regimes in new south Wales, Australia[J]. Forests, 2017, 8: 439. doi: 10.3390/f8110439
    [23]
    Zou W T, Zeng W S, Zhang L J, et al. Modeling crown biomass for four pine species in China[J]. Forests, 2015, 6: 433-449. doi: 10.3390/f6020433
    [24]
    Kralicek K, Bao H, Poudel K P, et al. Simultaneous estimation of above- and below-ground biomass in tropical forests of Viet Nam[J]. Forest Ecology and Management, 2017, 390: 147-156. doi: 10.1016/j.foreco.2017.01.030
    [25]
    Ali A K, Xu M S, Zhao Y T, et al. Allometric biomass equations for shrub and small tree species in subtropical China[J]. Silva Fennica, 2015, 49: 1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=25c7bf1218dfec096125696c04ce3f43
    [26]
    White H. A heterokedasticity-consistent a variance matrix estimator and a direct test for heterokedasticity[J]. Econometrica, 1980, 48: 817-827. doi: 10.2307/1912934
    [27]
    刘明.异方差White检验应用的几个问题[J].统计与信息论坛, 2012, 27(6):45-49. doi: 10.3969/j.issn.1007-3116.2012.06.008

    Liu M. The several problems of White test for heteroscedasticity[J]. Statistics and Information Forum, 2012, 27(6):45-49. doi: 10.3969/j.issn.1007-3116.2012.06.008
    [28]
    Li H, Zhao P. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale[J]. Forest Ecology and Management, 2013, 289: 153-163. doi: 10.1016/j.foreco.2012.10.002
    [29]
    Kozak A, Kozak R. Does cross validation provide additional information in the evaluation of regression models?[J]. Canadian Journal of Forest Research, 2003, 3: 1499.
    [30]
    曾伟生, 唐守正.立木生物量方程的优度评价和精度分析[J].林业科学, 2011, 47(11): 106-113. doi: 10.11707/j.1001-7488.20111117

    Zeng W S, Tang S Z. Goodness evaluation and precision analysis of tree biomass equations[J]. Scientia Silvae Sinicae, 2011, 47(11): 106-113. doi: 10.11707/j.1001-7488.20111117
    [31]
    Návar J. Biomass component equations for Latin American species and groups of species[J]. Annals of Forest Science, 2009, 66: 208. doi: 10.1051/forest/2009001
    [32]
    Sierra C A, Valle J I D, Orrego S A, et al. Total carbon stocks in a tropical forest landscape of the Porce region, Colombia[J]. Forest Ecology and Management, 2007, 243: 299-309. doi: 10.1016/j.foreco.2007.03.026
    [33]
    Wang X, Fang J, Tang Z, et al. Climatic control of primary forest structure and DBH-height allometry in Northeast China[J]. Forest Ecology and Management, 2006, 234: 264-274. doi: 10.1016/j.foreco.2006.07.007
    [34]
    Zhou X, Brandle J R, Schoeneberger M M, et al. Developing above-ground woody biomass equations for open-grown, multiple-stemmed tree species: shelterbelt-grown russianolive[J]. Ecological Modelling, 2007, 202: 311-323. doi: 10.1016/j.ecolmodel.2006.10.024
    [35]
    Balboa-Murias M Á, Rodríguez-Soalleiro R, Merino A, et al. Temporal variations and distribution of carbon stocks in aboveground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives[J]. Forest Ecology and Management, 2006, 237: 29-38. doi: 10.1016/j.foreco.2006.09.024
    [36]
    范少辉, 刘广路, 张群, 等.华北沙地小黑杨林生物量及其与树冠关系的研究[J].林业科学研究, 2010, 23(1):71-76. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201001012

    Fan S H, Liu G L, Zhang Q, et al. A study on biomass and productivity of Populus×xiaohei plantation on sandy land in North China[J]. Forest Research, 2010, 23(1): 71-76. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201001012
    [37]
    Niklas K J, Enquist B J. Canonical rules for plant biomass partitioning and annual allocation[J]. American Journal of Botany, 2002, 89: 812-819. doi: 10.3732/ajb.89.5.812
    [38]
    Wang J, Zhang C, Xia F, et al. Biomass structure and allometry of Abies nephrolepis (Maxim) in Northeast China[J]. Silva Fennica, 2011, 45: 211-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7abf80e7edf120a86ef2f45f1f80dece
    [39]
    Cairns M A, Brown S, Helmer E H, et al. Root biomass allocation in the world's upland forests[J]. Oecologia, 1997, 111: 1-11. doi: 10.1007/s004420050201
    [40]
    Nicoll B C, Ray D. Adaptive growth of tree root systems in response to wind action and site conditions[J]. Tree Physiology, 1996, 16: 891-898. doi: 10.1093/treephys/16.11-12.891
    [41]
    Zianis D, Mencuccini M. Aboveground biomass relationships for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, Northern Greece, and generalised equations for Fagus sp.[J]. Annals of Forest Science, 2003, 60: 439-448. doi: 10.1051/forest:2003036
  • Related Articles

    [1]Zhou Kerou, Chen Zhuo, Yu Zhucheng, Zhong Yang, Shang Ce. Population structure and genetic diversity of Bretschneidera sinensis in Xianxialing Nature Reserve, Zhejiang Province of eastern China[J]. Journal of Beijing Forestry University, 2024, 46(11): 76-82. DOI: 10.12171/j.1000-1522.20230211
    [2]Qu Kai, Guo Haoping, Wang Baorui, Zhou Wenling, Hou Lili, Li Qin, Li Jihong, Cheng Tiantian. Genetic diversity analysis of Chionanthus retusus natural population based on SRAP molecular markers[J]. Journal of Beijing Forestry University, 2020, 42(12): 40-50. DOI: 10.12171/j.1000-1522.20200212
    [3]Yao Junxiu, Mao Xiuhong, Li Shanwen, Liu Xueliang, Wu Dejun. Genetic diversity of germplasm resources of Leuce based on SSR fluorescent marker[J]. Journal of Beijing Forestry University, 2018, 40(6): 92-100. DOI: 10.13332/j.1000-1522.20170429
    [4]ZHOU Peng, LIN Wei, ZHU Qin, ZHOU Xiang-bin, WU Lin-ying, CHEN Xiao-yang. Genetic diversity of Machilus pauhoi assessed by SRAP markers.[J]. Journal of Beijing Forestry University, 2016, 38(9): 16-24. DOI: 10.13332/j.1000-1522.20150423
    [5]CHEN Ling-na, MA Qing-guo, ZHANG Jun-pei, ZHOU Bei-bei, PEI Dong. Development of BAC-SSR markers in walnut and its application in genetic diversity analysis[J]. Journal of Beijing Forestry University, 2014, 36(6): 24-29. DOI: 10.13332/j.cnki.jbfu.2014.06.008
    [6]LI Tian, GUO Jun-e, ZHENG Cheng-shu, SUN Xia, SUN Xian-zhi. Genetic diversity and construction of fingerprinting of chrysanthemum cultivars by CDDP markers[J]. Journal of Beijing Forestry University, 2014, 36(4): 94-101. DOI: 10.13332/j.cnki.jbfu.2014.04.018
    [7]YU Xiao-nan, JI Li-jing, WANG Qi. Research advances in molecular genetic diversity of Paeonia L.[J]. Journal of Beijing Forestry University, 2012, 34(3): 130-136.
    [8]LIAO Hui-rong, GU Wan-chun, MING Jun. Determining genetic diversity of natural population of Syringa oblatausing allozyme markers.[J]. Journal of Beijing Forestry University, 2009, 31(5): 84-89.
    [9]LI Lun-guang, HE Ping, HE Wei. Genetic diversity of fiveneedle pine blister rusts detected by random amplified microsatellite (RAMS) in China.[J]. Journal of Beijing Forestry University, 2008, 30(6): 112-118.
    [10]ZHANG Yu-rong, LUO Ju-chun, YU Jin-xiu. Genetic diversity of the endangered plant Abies ziyuanensis detected by ISSR markers[J]. Journal of Beijing Forestry University, 2007, 29(6): 41-46. DOI: 10.13332/j.1000-1522.2007.06.012

Catalog

    Article views (1622) PDF downloads (36) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return