Citation: | Liu Junling, Liang Kehao, Miao Yahui, Hu Anni, Sun Yongjiang, Zhang Lingyun. Characteristics of PwUSP1 in Picea wilsonii and its response to drought and salt stress[J]. Journal of Beijing Forestry University, 2020, 42(10): 62-70. DOI: 10.12171/j.1000-1522.20200063 |
[1] |
Van Bogelen R A, Hutton M E, Neidhardt F C. Gene-protein database of escherichia coli K-12: edition 3[J]. Electrophoresis, 1990, 11(12): 1131−1166. doi: 10.1002/elps.1150111205.
|
[2] |
Kvint K, Nachin L, Diez A, et al. The bacterial universal stress protein: function and regulation[J]. Current Opinion in Microbiology, 2003, 6: 140−145.
|
[3] |
Sousa M C, Mckay D B. Structure of the universal stress protein of Haemophilus influenzae[J]. Structure, 2001, 9(12): 1135−1141. doi: 10.1016/S0969-2126(01)00680-3.
|
[4] |
Aravind L, Anantharaman V, Koonin E V. Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: implications for protein evolution in the RNA world[J]. Proteins: Structure, Function, and Genetics, 2002, 48(1): 1−14. doi: 10.1002/prot.10064.
|
[5] |
Kerk D, Bulgrien J, Smith D W, et al. Arabidopsis proteins containing similarity to the universal stress protein domain of bacteria[J]. Plant Physiology, 2003, 131(3): 1209−1219. doi: 10.1104/pp.102.016006.
|
[6] |
Diez A, Gustavsson N, Nystrom T. The universal stress protein A of Escherichia coli is required for resistance to DNA damaging agents and is regulated by a RecA/FtsK-dependent regulatory pathway[J]. Molecular Microbiology, 2000, 36(6): 1494−1503.
|
[7] |
Jones P G, Cashel M, Glaser G, et al. Function of a relaxed-like state following temperature downshifts in Escherichia coli[J]. Journal of Bacteriology, 1992, 174(12): 3903−3914. doi: 10.1128/JB.174.12.3903-3914.1992.
|
[8] |
Javeed A, Fan M X, Shi L, et al. Isolation and characterization of a pollen- specific gene Zmstk2_USP from Zea mays[J]. Applied Ecology and Environmental Research, 2018, 16(1): 487−494. doi: 10.15666/aeer/1601_487494.
|
[9] |
Jung Y J, Melencion S M, Lee E S, et al. Universal stress protein exhibits a redox-dependent chaperone function in Arabidopsis and enhances plant tolerance to heat shock and oxidative stress[J]. Frontiers in Plant Science, 2015, 6: 1141−1151.
|
[10] |
Loukehaich R, Wang T, Ouyang B, et al. SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato[J]. Journal of Experimental Botany, 2012, 63(15): 5593−5606. doi: 10.1093/jxb/ers220.
|
[11] |
Sinha P, Pazhamala L T, Singh V K, et al. Identification and validation of selected universal stress protein domain containing drought-responsive genes in Pigeonpea (Cajanus cajan L.)[J]. Frontiers in Plant Science, 2015, 6: 1065−1073.
|
[12] |
Udawat P, Mishra A, Jha B. Heterologous expression of an uncharacterized universal stress protein gene (SbUSP) from the extreme halophyte, Salicornia brachiata, which confers salt and osmotic tolerance to E. coli[J]. Gene, 2014, 536(1): 163−170. doi: 10.1016/j.gene.2013.11.020.
|
[13] |
Bhuria M, Goel P, Kumar S, et al. The promoter of AtUSP is co-regulated by phytohormones and abiotic stresses in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2016, 7: 1957−1969.
|
[14] |
Udawat P, Jha R K, Sinha D, et al. Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP) mitigates salt and osmotic stress in transgenic tobacco plants[J]. Frontiers in Plant Science, 2016, 7: 518−538.
|
[15] |
Li W, Zhao F, Fang W, et al. Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique[J]. Frontiers in Plant Science, 2015, 6: 732−745.
|
[16] |
Maqbool A, Zahur M, Husnain T, et al. GUSP1 and GUSP2, two drought-responsive genes in Gossypium arboreum have homology to universal stress proteins[J]. Plant Molecular Biology Reporter, 2009, 27(1): 109−114. doi: 10.1007/s11105-008-0049-0.
|
[17] |
Chi Y H, Koo S S, Oh H T, et al. The physiological functions of universal stress proteins and their molecular mechanism to protect plants from environmental stresses[J]. Frontiers in Plant Science, 2019, 10: 750−762. doi: 10.3389/fpls.2019.00750.
|
[18] |
游韩莉, 袁义杭, 李长江, 等. 青杄MYB转录因子基因PwMYB20的克隆及表达分析[J]. 林业科学, 2017, 53(5):23−32. doi: 10.11707/j.1001-7488.20170504.
You H L, Yuan Y H, Li C J, et al. Cloning and expression analysis of MYB homologous gene PwMYB20 from Picea wilsonii[J]. Scientia Silvae Sinicae, 2017, 53(5): 23−32. doi: 10.11707/j.1001-7488.20170504.
|
[19] |
崔晓燕, 李长江, 孙帆, 等. 青杆PwUSP1基因的克隆及表达模式分析[J]. 植物生理学报, 2014, 50(4):407−414.
Cui X Y, Li C J, Sun F, et al. Cloning and expression analysis of PwUSP1 from Picea wilsonii[J]. Plant Physiology Journal, 2014, 50(4): 407−414.
|
[20] |
Clough S J, Bent A F. Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant Journal, 1999, 16(6): 735−743.
|
[21] |
Zhang H, Cui X, Guo Y, et al. Picea wilsonii transcription factor NAC2 enhanced plant tolerance to abiotic stress and participated in RFCP1-regulated flowering time[J]. Plant Molecular Biology, 2018, 98(6): 471−493. doi: 10.1007/s11103-018-0792-z.
|
[22] |
Nakashima A, Chen L, Thao N P, et al. RACK1 functions in rice innate immunity by interacting with the Rac1 immune complex[J]. Plant Cell, 2008, 20(8): 2265−2279. doi: 10.1105/tpc.107.054395.
|
[23] |
Melencion S M B, Chi Y H, Pham T T, et al. RNA chaperone function of a universal stress protein in Arabidopsis confers enhanced cold stress tolerance in plants[J]. International Journal of Molecular Sciences, 2017, 18(12): 2546−2561. doi: 10.3390/ijms18122546.
|
[24] |
Nachin L, Brive L, Persson K, et al. Heterodimer formation within universal stress protein classes revealed by an in Silico and experimental approach[J]. Journal of Molecular Biology, 2008, 380(2): 340−350. doi: 10.1016/j.jmb.2008.04.074.
|
[25] |
Yang M, Che S, Zhang Y, et al. Universal stress protein in Malus sieversii confers enhanced drought tolerance[J]. Journal of Plant Research, 2019, 132(6): 825−837. doi: 10.1007/s10265-019-01133-7.
|
[26] |
刘灿. 盐芥TsNAC1转录因子及其在玉米中同源基因功能的研究[D]. 济南: 山东大学, 2018.
Liu C. Function analysis of TsNAC1 in T. halophila and its orthologs in Zea mays[D]. Jinan: Shandong University, 2018.
|
[27] |
王晋芳. 黄瓜NAC转录因子CsATAF1响应干旱胁迫的机制研究[D]. 北京: 中国农业大学, 2018.
Wang J F. The mechanism of NAC transcription factor CsATAF1 in response to drought stress in cucumber[D]. Beijing: China Agricultural University, 2018.
|
[28] |
Gutiérrez-Beltrán E, Personat J M, Torre F D, et al. A universal stress protein involved in oxidative stress is a phosphorylation target for protein kinase CIPK6[J]. Plant Physiology, 2017, 173(1): 836−852. doi: 10.1104/pp.16.00949
|
[1] | Feng Xiao, Tian Ling, Yin Qun, Jia Zhongkui. Response of growth and physiological characteristics of three Magnolia spp. seedlings to drought stress[J]. Journal of Beijing Forestry University, 2024, 46(9): 57-67. DOI: 10.12171/j.1000-1522.20230312 |
[2] | Yan Jiahui, Zhou Chengcheng, Niu Shihui, Li Wei. Identification of SAUR gene family in Pinus tabuliformis and analysis on its expression patterns under drought stress[J]. Journal of Beijing Forestry University, 2024, 46(8): 57-67. DOI: 10.12171/j.1000-1522.20230333 |
[3] | Feng Lei, Xu Wanli, Tang Guangmu, Zhang Yunshu, Gu Meiying. Characteristics of Lycium ruthenicum adapting to salinization stress after salt tolerance training[J]. Journal of Beijing Forestry University, 2020, 42(12): 83-90. DOI: 10.12171/j.1000-1522.20200123 |
[4] | Yan Wenhua, Wu Dejun, Yan Liping, Wang Yinhua, Ren Fei, Yan Lin, Liu Jie, Yu Linlin. Comprehensive evaluation of salt tolerance of clones of Fraxinusin spp. seedling stage under salt stress[J]. Journal of Beijing Forestry University, 2019, 41(11): 44-53. DOI: 10.13332/j.1000-1522.20180438 |
[5] | Yao Kun, Lian Conglong, Wang Jingjing, Wang Houling, Liu Chao, Yin Weilun, Xia Xinli. PePEX11 functions in regulating antioxidant capacity of Arabidopsis thaliana under salt stress[J]. Journal of Beijing Forestry University, 2018, 40(5): 19-28. DOI: 10.13332/j.1000-1522.20180086 |
[6] | JING Xiao-shu, SUN Yuan-ling, XIANG Min, QIAN Ze-yong, LANG Tao, ZHAO Rui, SHEN Xin, CHEN Shao-liang. Overexpression of KcTrxf in tobacco enhances salt tolerance through the regulation of ROS homeostasis under NaCl stress[J]. Journal of Beijing Forestry University, 2015, 37(6): 17-26. DOI: 10.13332/j.1000-1522.20150010 |
[7] | QIN Bing-xing, YAO Li-ping, ZHOU Zhi-qiang, ZHANG Yu-hong. Influence of drought stress on plant physiology and berberine content of leaves in Phellodendron amurense seedlings[J]. Journal of Beijing Forestry University, 2012, 34(3): 26-30. |
[8] | LI Jing, LIU Qun-lu, TANG Dong-qin, ZHANG Ting-ting. Effects of salt stress and salt leaching on the physiological characteristics of Chaenomeles speciosa[J]. Journal of Beijing Forestry University, 2011, 33(6): 40-46. |
[9] | SHI Zheng, SHI Shengqing, YAO Hongjun, ZHONG Chuanfei, GAO Rong-fu. Production of ROS and its antioxidant system in plant mitochondria. [J]. Journal of Beijing Forestry University, 2009, 31(1): 150-154. |
[10] | SONG Ying-qi, YANG Qian, QIN Gen-ji, QU Li-jia. AtPIP5K2 gene involved in regulating the sensitivity to salt stress of Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2006, 28(5): 78-83. |