• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Junling, Liang Kehao, Miao Yahui, Hu Anni, Sun Yongjiang, Zhang Lingyun. Characteristics of PwUSP1 in Picea wilsonii and its response to drought and salt stress[J]. Journal of Beijing Forestry University, 2020, 42(10): 62-70. DOI: 10.12171/j.1000-1522.20200063
Citation: Liu Junling, Liang Kehao, Miao Yahui, Hu Anni, Sun Yongjiang, Zhang Lingyun. Characteristics of PwUSP1 in Picea wilsonii and its response to drought and salt stress[J]. Journal of Beijing Forestry University, 2020, 42(10): 62-70. DOI: 10.12171/j.1000-1522.20200063

Characteristics of PwUSP1 in Picea wilsonii and its response to drought and salt stress

More Information
  • Received Date: March 08, 2020
  • Revised Date: April 19, 2020
  • Available Online: October 01, 2020
  • Published Date: October 24, 2020
  •   Objective  Universal stress proteins (USP) are stress-related genes which are widely reported to participate in the process of abiotic-stress response of plants. By identifying and validating the function of PwUSP1, we revealed the role of PwUSP1 in plants under drought and salt stress, thereby providing candidate genes for improving the tolerance to abiotic stress through genetic engineering in Picea wilsonii.
      Method  Transient transformation of tobacco leaves was used to reveal the location of PwUSP1 in cells. Yeast two-hybrid experiment was used to determine whether PwUSP1 could form homodimers by itself. The Arabidopsis Col-0 (WT) was transferred by floral dip method to obtain homozygous PwUSP1 overexpression lines. The survival rates and water loss rates of PwUSP1 overexpression plants, wild type (WT) and empty vector (VC) were measured to analyze and compare the tolerance of different lines when plants were subjected to drought and salinity. DAB and NBT staining, the activities of SOD, POD, CAT and the content of MDA were determined to explore the potential physiological mechanism of PwUSP1 acting.
      Result  Subcellular localization results showed that PwUSP1 was located in the nucleus, cytoplasm and cell membrane. Besides, the yeast two hybrid experiment showed that PwUSP1 itself can form homodimers. qRT-PCR was used to detect transgenic Arabidopsis, and the results showed that two independent homozygous lines with stable overexpression (L1, L7) were successfully obtained for further analysis. Under drought or salt stress, compared with WT and VC, PwUSP1 overexpression lines significantly improved the drought or salt tolerance of plants, and showed higher survival rates and lower water loss rates. Furthermore, overexpression of PwUSP1 obviously reduced the content of H2O2 and O2 , and simultaneously promoted the activities of antioxidant enzymes and inhibited the accumulation of MDA.
      Conclusion  PwUSP1 is located in the nucleus, cytoplasm and cell membrane, and can form homodimers by itself. Under drought or salt stress, PwUSP1 improves the tolerance to abiotic stress of plants by enhancing ROS scavenging ability and inhibiting membrane lipid peroxidation.
  • [1]
    Van Bogelen R A, Hutton M E, Neidhardt F C. Gene-protein database of escherichia coli K-12: edition 3[J]. Electrophoresis, 1990, 11(12): 1131−1166. doi: 10.1002/elps.1150111205.
    [2]
    Kvint K, Nachin L, Diez A, et al. The bacterial universal stress protein: function and regulation[J]. Current Opinion in Microbiology, 2003, 6: 140−145.
    [3]
    Sousa M C, Mckay D B. Structure of the universal stress protein of Haemophilus influenzae[J]. Structure, 2001, 9(12): 1135−1141. doi: 10.1016/S0969-2126(01)00680-3.
    [4]
    Aravind L, Anantharaman V, Koonin E V. Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: implications for protein evolution in the RNA world[J]. Proteins: Structure, Function, and Genetics, 2002, 48(1): 1−14. doi: 10.1002/prot.10064.
    [5]
    Kerk D, Bulgrien J, Smith D W, et al. Arabidopsis proteins containing similarity to the universal stress protein domain of bacteria[J]. Plant Physiology, 2003, 131(3): 1209−1219. doi: 10.1104/pp.102.016006.
    [6]
    Diez A, Gustavsson N, Nystrom T. The universal stress protein A of Escherichia coli is required for resistance to DNA damaging agents and is regulated by a RecA/FtsK-dependent regulatory pathway[J]. Molecular Microbiology, 2000, 36(6): 1494−1503.
    [7]
    Jones P G, Cashel M, Glaser G, et al. Function of a relaxed-like state following temperature downshifts in Escherichia coli[J]. Journal of Bacteriology, 1992, 174(12): 3903−3914. doi: 10.1128/JB.174.12.3903-3914.1992.
    [8]
    Javeed A, Fan M X, Shi L, et al. Isolation and characterization of a pollen- specific gene Zmstk2_USP from Zea mays[J]. Applied Ecology and Environmental Research, 2018, 16(1): 487−494. doi: 10.15666/aeer/1601_487494.
    [9]
    Jung Y J, Melencion S M, Lee E S, et al. Universal stress protein exhibits a redox-dependent chaperone function in Arabidopsis and enhances plant tolerance to heat shock and oxidative stress[J]. Frontiers in Plant Science, 2015, 6: 1141−1151.
    [10]
    Loukehaich R, Wang T, Ouyang B, et al. SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato[J]. Journal of Experimental Botany, 2012, 63(15): 5593−5606. doi: 10.1093/jxb/ers220.
    [11]
    Sinha P, Pazhamala L T, Singh V K, et al. Identification and validation of selected universal stress protein domain containing drought-responsive genes in Pigeonpea (Cajanus cajan L.)[J]. Frontiers in Plant Science, 2015, 6: 1065−1073.
    [12]
    Udawat P, Mishra A, Jha B. Heterologous expression of an uncharacterized universal stress protein gene (SbUSP) from the extreme halophyte, Salicornia brachiata, which confers salt and osmotic tolerance to E. coli[J]. Gene, 2014, 536(1): 163−170. doi: 10.1016/j.gene.2013.11.020.
    [13]
    Bhuria M, Goel P, Kumar S, et al. The promoter of AtUSP is co-regulated by phytohormones and abiotic stresses in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2016, 7: 1957−1969.
    [14]
    Udawat P, Jha R K, Sinha D, et al. Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP) mitigates salt and osmotic stress in transgenic tobacco plants[J]. Frontiers in Plant Science, 2016, 7: 518−538.
    [15]
    Li W, Zhao F, Fang W, et al. Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique[J]. Frontiers in Plant Science, 2015, 6: 732−745.
    [16]
    Maqbool A, Zahur M, Husnain T, et al. GUSP1 and GUSP2, two drought-responsive genes in Gossypium arboreum have homology to universal stress proteins[J]. Plant Molecular Biology Reporter, 2009, 27(1): 109−114. doi: 10.1007/s11105-008-0049-0.
    [17]
    Chi Y H, Koo S S, Oh H T, et al. The physiological functions of universal stress proteins and their molecular mechanism to protect plants from environmental stresses[J]. Frontiers in Plant Science, 2019, 10: 750−762. doi: 10.3389/fpls.2019.00750.
    [18]
    游韩莉, 袁义杭, 李长江, 等. 青杄MYB转录因子基因PwMYB20的克隆及表达分析[J]. 林业科学, 2017, 53(5):23−32. doi: 10.11707/j.1001-7488.20170504.

    You H L, Yuan Y H, Li C J, et al. Cloning and expression analysis of MYB homologous gene PwMYB20 from Picea wilsonii[J]. Scientia Silvae Sinicae, 2017, 53(5): 23−32. doi: 10.11707/j.1001-7488.20170504.
    [19]
    崔晓燕, 李长江, 孙帆, 等. 青杆PwUSP1基因的克隆及表达模式分析[J]. 植物生理学报, 2014, 50(4):407−414.

    Cui X Y, Li C J, Sun F, et al. Cloning and expression analysis of PwUSP1 from Picea wilsonii[J]. Plant Physiology Journal, 2014, 50(4): 407−414.
    [20]
    Clough S J, Bent A F. Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant Journal, 1999, 16(6): 735−743.
    [21]
    Zhang H, Cui X, Guo Y, et al. Picea wilsonii transcription factor NAC2 enhanced plant tolerance to abiotic stress and participated in RFCP1-regulated flowering time[J]. Plant Molecular Biology, 2018, 98(6): 471−493. doi: 10.1007/s11103-018-0792-z.
    [22]
    Nakashima A, Chen L, Thao N P, et al. RACK1 functions in rice innate immunity by interacting with the Rac1 immune complex[J]. Plant Cell, 2008, 20(8): 2265−2279. doi: 10.1105/tpc.107.054395.
    [23]
    Melencion S M B, Chi Y H, Pham T T, et al. RNA chaperone function of a universal stress protein in Arabidopsis confers enhanced cold stress tolerance in plants[J]. International Journal of Molecular Sciences, 2017, 18(12): 2546−2561. doi: 10.3390/ijms18122546.
    [24]
    Nachin L, Brive L, Persson K, et al. Heterodimer formation within universal stress protein classes revealed by an in Silico and experimental approach[J]. Journal of Molecular Biology, 2008, 380(2): 340−350. doi: 10.1016/j.jmb.2008.04.074.
    [25]
    Yang M, Che S, Zhang Y, et al. Universal stress protein in Malus sieversii confers enhanced drought tolerance[J]. Journal of Plant Research, 2019, 132(6): 825−837. doi: 10.1007/s10265-019-01133-7.
    [26]
    刘灿. 盐芥TsNAC1转录因子及其在玉米中同源基因功能的研究[D]. 济南: 山东大学, 2018.

    Liu C. Function analysis of TsNAC1 in T. halophila and its orthologs in Zea mays[D]. Jinan: Shandong University, 2018.
    [27]
    王晋芳. 黄瓜NAC转录因子CsATAF1响应干旱胁迫的机制研究[D]. 北京: 中国农业大学, 2018.

    Wang J F. The mechanism of NAC transcription factor CsATAF1 in response to drought stress in cucumber[D]. Beijing: China Agricultural University, 2018.
    [28]
    Gutiérrez-Beltrán E, Personat J M, Torre F D, et al. A universal stress protein involved in oxidative stress is a phosphorylation target for protein kinase CIPK6[J]. Plant Physiology, 2017, 173(1): 836−852. doi: 10.1104/pp.16.00949
  • Related Articles

    [1]Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321
    [2]Xu Yujin, Li Xiang, Li Yan, Jiang Luping, Zhang Feifan, Wang Qi, Wang Lixing, Zhao Xiyang. Dynamic changes in seed, cone traits and nutritional components of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2024, 46(7): 67-76. DOI: 10.12171/j.1000-1522.20220148
    [3]Liu Xiaoting, Wei Jiatong, Wu Peili, Wu Lin, Xu Qingshan, Fang Yanlin, Yang Bin, Zhao Xiyang. Phenotypic variation and diversity of natural Pinus koraiensis populations in Jilin Province of northern China[J]. Journal of Beijing Forestry University, 2021, 43(4): 25-34. DOI: 10.12171/j.1000-1522.20200250
    [4]Zhu Yihong, Gao Lushuang, Jia Bo, Zhang Pingrui, Wang Yinpeng, Ou Lijin. Dynamic characteristics and its influencing factors of the volatile carbon content of Pinus koraiensis at different diameter classes[J]. Journal of Beijing Forestry University, 2019, 41(1): 10-19. DOI: 10.13332/j.1000-1522.20180289
    [5]LIANG De-yang, JIN Yun-zhe, ZHAO Guang-hao, DONG Yuan-hai, LENG Wei-wei, CHEN Chang-lin, WANG Huan, ZHAO Xi-yang. Variance analyses of growth and wood characteristics of 50 Pinus koraiensis clones[J]. Journal of Beijing Forestry University, 2016, 38(6): 51-59. DOI: 10.13332/j.1000-1522.20150465
    [6]ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008
    [7]GAO Hui-lin, LI Feng-ri, DONG Li-hu. Crown-shape model of a Pinus koraiensis plantation in northeastern China[J]. Journal of Beijing Forestry University, 2015, 37(3): 76-83. DOI: 10.13332/j.1000-1522.20140324
    [8]ZHANG Zhen, ZHANG Han-guo, ZHOU Yu, LIU Ling, YU Hong-ying, WANG Xu, FENG Wan-ju. Variation of seed characters in Korean pine (Pinus koraiensis ) multi-clonal populations[J]. Journal of Beijing Forestry University, 2015, 37(2): 67-78. DOI: 10.13332/j.cnki.jbfu.2015.02.020
    [9]LIU Ran, WANG Zhen-yu, CUI Jie, DENG Xin-rui, LU Jing. Effects of precursors and elicitations on the synthesis polyphenols of Pinus koraiensis.[J]. Journal of Beijing Forestry University, 2013, 35(5): 22-27.
    [10]WANG Qi, PENG Lu, YAN Shan-chun, LIAO Yue-zhi. Electroantennogram and behavioral responses of Pissodes nitidus to terpene volatiles of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2011, 33(4): 91-95.
  • Cited by

    Periodical cited type(11)

    1. 赵钰婷,陈冬瑶,杨柳,李晶楠,宁广亮,姜静. 白桦四倍体×紫雨桦二倍体杂交种子活力及杂种子代生长特性分析. 温带林业研究. 2025(01): 1-8 .
    2. 任亚超,张军,王进茂,杨敏生. 科研反哺教学在林木育种学教学中的探索与实践. 安徽农业科学. 2024(10): 278-282 .
    3. 杨琦,王湘莹,王晓明,乔中全,唐丽. 大花紫薇ב丹红紫叶’紫薇杂交F_1代不育株转录组测序. 东北林业大学学报. 2024(09): 25-29 .
    4. 赵一帆,孔博,程雪桐,李亮,凌傲宇,李智群,康向阳,张平冬. 赤霉素喷洒处理诱导新疆杨2n花粉产生及其对微管骨架的影响. 北京林业大学学报. 2023(01): 40-50 . 本站查看
    5. 李智群,孔博,程雪桐,李亮,张平冬. 高温诱导银灰杨花粉败育的细胞学机理研究. 北京林业大学学报. 2023(05): 25-34 . 本站查看
    6. 刘春洋,彭朝凤,程世平,姚鹏强,耿喜宁,谢丽华. 高温诱导‘凤丹’牡丹2n雌配子创制三倍体. 园艺学报. 2023(07): 1455-1466 .
    7. 刘宣晨,刘彩霞,张世凯,李开隆,曲冠证. 大青杨×小黑杨异源三倍体新种质创制. 东北林业大学学报. 2023(10): 19-27 .
    8. 周炳秀,刘勇,彭玉信,张劲,赵建松,朱轶超,赵巧玲,王硕,陶靖,孟路. 雄性毛白杨无性系苗期表型和生理变异的早期综合评价. 东北林业大学学报. 2023(11): 1-9 .
    9. 吴婷,贾瑞冬,杨树华,赵鑫,于晓南,国圆,葛红. 蝴蝶兰多倍体育种研究进展与展望. 园艺学报. 2022(02): 448-462 .
    10. 张新宇,董阳,王梦蕾,孙照斌. 银腺杨解剖及理化性能研究. 林业科技. 2022(05): 33-36 .
    11. 陈赢男,韦素云,曲冠正,胡建军,王军辉,尹佟明,潘惠新,卢孟柱,康向阳,李来庚,黄敏仁,王明庥. 现代林木育种关键核心技术研究现状与展望. 南京林业大学学报(自然科学版). 2022(06): 1-9 .

    Other cited types(14)

Catalog

    Article views (1931) PDF downloads (80) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return