• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhao Haiyan, Wei Ning, Sun Congcong, Bai Yilin, Zheng Caixia. Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings[J]. Journal of Beijing Forestry University, 2018, 40(11): 28-41. DOI: 10.13332/j.1000-1522.20180258
Citation: Zhao Haiyan, Wei Ning, Sun Congcong, Bai Yilin, Zheng Caixia. Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings[J]. Journal of Beijing Forestry University, 2018, 40(11): 28-41. DOI: 10.13332/j.1000-1522.20180258

Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings

More Information
  • Received Date: August 06, 2018
  • Revised Date: October 23, 2018
  • Published Date: October 31, 2018
  • ObjectivePhysiological mechanism of salt tolerance in Ginkgo biloba is not only helpful to solve the problem that snow melting agent and other salts leading to weakened growth of Ginkgo biloba, but also useful for fine species breeding and plant area enlargement of Ginkgo biloba.
    MethodIn this study, the three-year-old Ginkgo biloba potted seedlings were used as plant material to explore physiological characteristics. By conditional control method, the concentrations of NaCl were set as 0, 0.2%, 0.4%, 0.6%, 0.8% and 1.0%, respectively. The changes of the growth, anatomic structure of tissue, photosynthesis in Ginkgo biloba were observed under NaCl stress.
    ResultThe survival rate was 100% in the 0.2%-0.8% NaCl treated group on the 64th day of salt stress, the relative growth yield of plant height and ground diameter in Ginkgo biloba seedlings under 0.2% NaCl treatment group had no significant difference compared with the control, but they were severely restrained under high concentration of NaCl(0.6%-1.0%)treatment group(P < 0.05). It indicated that Ginkgo biloba seedlings in our study can grow normally when the salt concentration was below 0.44%. From the result of noninvasive scanning electron microscope observation, we found that a great number of pores existed on leave hypodermis, stoma closure time and extent were uneven, the sink of guard cells and the upheaval of subsidiary cells occurred. The leaf cuticle was thickened, and the leaf surface was covered by tubular wax crystal. A great deal of salt cluster crystal was observed in stem parenchymal cell, and little was found in root and stipe, suggesting that the Ginkgo biloba seedlings had certain ability of salt reservation in stem. These anatomical characteristics of Ginkgo biloba seedlings were related to their salt tolerance. The diurnal variations of photosynthesis(PnGsTr、WUE)in the treatment group showed bimodal curves, Ci showed fall-rise and Ls showed rise-fall trend, respectively. The peak and valley values of Pn in the 0.2% treatment group were very significantly higher than other groups(P < 0.01). With the increase of treatment time, value of Pn decreased, while the values of GsCiTr showed rise-fall trends. The Pn of the 0.2% treatment group was very significantly higher than the other groups before the processing of the former 35 days(P < 0.01), while lower than the other groups after that(P < 0.01), these could be resulted from stomatal limitation. The Pn of the 0.4%-1.0% treatment groups was very significantly lower than the control during the whole processing of salt(P < 0.01), and the decrease of Pn value in medium concentration(0.4%)treatment group was mainly resulted from stomatal limitation before the processing of the former 2-7 days, while that in the higher concentration(0.6%-1.0%)treatment group was mainly resulted from non-stomatal limitation in the same period, the decrease of Pn value in 0.4%-1.0% treatment groups was mainly resulted from non-stomatal limitation on the first day and in the lately stages of processing (the 35th day of stress), putatively resulting from emergency response of Ginkgo biloba and decrease of photosynthetic activity in high concentration in mesophyll cell.
    ConclusionIt can be seen that this Ginkgo biloba species has certain salt tolerance and can be planted under 0.44% NaCl in soil. Photosynthesis parameters are sensitive to salt stress, and this can be useful to monitor and estimate salinity tolerance of Ginkgo biloba.
  • [1]
    Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349. doi: 10.1016/j.ecoenv.2004.06.010
    [2]
    Bidalia A, Hanief M, Rao K S. Tolerance of Mitragyna parvifolia (Roxb.) Korth. seedlings to NaCl salinity[J]. Photosynthetica, 2017, 55 (2): 231-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b66502f8df1ff64da4cabe399ec2b080
    [3]
    Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681. doi: 10.1146/annurev.arplant.59.032607.092911
    [4]
    Apse M P, Blumwald E. Engineering salt tolerance in plants[J]. Current Opinion in Biotechnology, 2002, 13(2):146-150. doi: 10.1016/S0958-1669(02)00298-7
    [5]
    Rus A, Yokoi S, Sharkhuu A, et al. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots[J]. PNAS, 2001, 98(24):14150-14155. doi: 10.1073/pnas.241501798
    [6]
    Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes[J]. Annual Review of Plant Biology, 1980, 31(1): 149-190. doi: 10.1146/annurev.pp.31.060180.001053
    [7]
    Flowers T J, Colmer T D. Salinity tolerance in halophytes[J]. New Phytologist, 2008, 179(4), 945-963. doi: 10.1111/nph.2008.179.issue-4
    [8]
    刘文英.植物逆境与基因[M].北京:北京理工大学出版社, 2015:1-2.

    Liu W Y. Plant stress and gene[M].Beijing: Beijing Institute Technology Press, 2015:1-2.
    [9]
    Hao L, Zhao Y, Jin D D, et al. Salicylic acid-altering Arabidopsis mutants response to salt stress[J]. Plant and Soil, 2012, 354(1-2):81-95. doi: 10.1007/s11104-011-1046-x
    [10]
    Gu W T, Zhou L B, Liu R Y, et al. Synergistic responses of NHX, AKT1, and SOS1 in the control of Na+ homeostasis in sweet sorghum mutants induced by 12C6+-ion irradiation[J].Nuclear Science and Techniques, 2018, 29(10):1-7. doi: 10.1007/s41365-017-0341-5
    [11]
    王丽燕, 赵可夫. NaCl胁迫对海蓬子(Salicornia bigelovii Torr.)离子区室化、光合作用和生长的影响[J].植物生理与分子生物学学报, 2004, 30(1): 94-98. http://d.old.wanfangdata.com.cn/Periodical/zwslxb200401014

    Wang L Y, Zhao K F. Effect of NaCl stress on ion compartmentation, photosynthesis and growth of Salicornia bigelovii Torr.[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30(1):94-98. http://d.old.wanfangdata.com.cn/Periodical/zwslxb200401014
    [12]
    Dunn G M, Neales T F. Are the effects of salinity on growth and leaf gas exchange related?[J].Photosynthetica, 1994, 29(1):33-42.
    [13]
    郑彩霞, 邱箭, 姜春宁, 等.胡杨多形叶气孔特征及光合特性的比较[J].林业科学, 2006, 42(8):19-24. http://d.old.wanfangdata.com.cn/Periodical/lykx200608004

    Zheng C X, Qiu J, Jiang C N, et al. Comparison of characteristics of stomas and photosynthesis of Populus euphratica polymorphic leaves[J]. Scientia Silvae Sinicae, 2006, 42(8):19-24. http://d.old.wanfangdata.com.cn/Periodical/lykx200608004
    [14]
    Feng Z T, Deng Y Q, Fan H, et al. Effects of NaCl stress on the growth and photosynthetic characteristics of Ulmus pumila L. seedlings in sand culture[J]. Photosynthetica, 2014, 52(2): 313-320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=550077ebc4982b55d31d2d2f4a2a4872
    [15]
    赵可夫, 范海.盐生植物及其对盐渍生境的适应生理[M].北京:科学出版社, 2005:71-74.

    Zhao K F, Fan H. Halophytes and their adaptive physiology to saline habitats[M].Beijing: Science Press, 2005:71-74.
    [16]
    Grieve C M, Francois L E, Maas E V. Salinity affects the timing of phasic development in spring wheat[J]. Crop Science, 1994, 34(6):1544-1549. doi: 10.2135/cropsci1994.0011183X003400060024x
    [17]
    Bernstein N, Silk W K, Lauchli A. Growth and development of sorghum leaves under conditions of NaCl stress: possible role of some mineral elements in growth inhibition[J]. Planta, 1995, 196(4):699-705. doi: 10.1007/BF01106763
    [18]
    Everard J D, Gucci R, Kann S C, et al. Gas exchange and carbon partitioning in the leaves of celery (Aptium Graveolens L.) at various leaves of root zone salinity[J].Plant Physiol, 1994, 106(1), 106:281-292. doi: 10.1104/pp.106.1.281
    [19]
    Mittal S, Kumari N, Sharma V. Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes[J]. Plant Physiology Biochemistry, 2012, 54: 17-26. doi: 10.1016/j.plaphy.2012.02.003
    [20]
    Parida A K, Das A B, Mittra B. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora[J].Trees, 2004, 18(2):167-174. doi: 10.1007/s00468-003-0293-8
    [21]
    López-Climent M F, Arbona V, Pérez-Clemente R M, et al. Relationship between salt tolerance and photosynthetic machinery performance in citrus[J]. Environmental and Experimental Botany, 2008, 62(2): 176-184. doi: 10.1016/j.envexpbot.2007.08.002
    [22]
    姚立生, 崔世友, 孙明法.植物耐盐性多学科的研究进展[M].北京:中国农业科学技术出版社, 2014.

    Yao L S, Cui S Y, Sun M F. Advances in multidisciplinary research on salt tolerance in plants[M].Beijing: China Agricultural Science and Technology Press, 2014.
    [23]
    柏锡, 朱延明, 李丽文, 等.转OsMAPK4基因水稻耐盐性分析[J].东北农业大学学报, 2009, 40(8):53-57. doi: 10.3969/j.issn.1005-9369.2009.08.012

    Bai X, Zhu Y M, Li L W, et al. Salt resistance analysis of rice transformed with OsMAPK4[J].Journal of Northeast Agricultural University, 2009, 40(8):53-57. doi: 10.3969/j.issn.1005-9369.2009.08.012
    [24]
    Major R T. The ginkgo, the most ancient living tree[J]. Science, 1967, 157: 1270-1273. doi: 10.1126/science.157.3794.1270
    [25]
    曹福亮.中国银杏[M].南京:江苏科学技术出版社, 2002.

    Cao F L. Chinese ginkgo[M]. Nanjing: Jiangsu Science and Technology Press, 2002.
    [26]
    汪贵斌, 曹福亮, 景茂, 等.水分胁迫对银杏叶片叶肉细胞超微结构的影响[J].南京林业大学学报(自然科学版), 2008, 32(5):65-70. doi: 10.3969/j.issn.1000-2006.2008.05.015

    Wang G B, Cao F L, Jing M, et al. The effect of water stress on mesophyll cell ultrastructure of Ginkgo[J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2008, 32(5):65-70. doi: 10.3969/j.issn.1000-2006.2008.05.015
    [27]
    Wang Y W, Sun L G, Xu J G, et al. Physiological and growth characteristics of Ginkgo biloba L. exposed to open fleld and shade enclosure during the reproductive stage[J]. Acta Physiologiae Plantarum, 2014, 36(10): 2671-2681. doi: 10.1007/s11738-014-1638-1
    [28]
    He X Y, Fu S L, Chen W, et al. Changes in effects of ozone exposure on growth, photosynthesis, and respiration of Ginkgo biloba in Shenyang urban area[J]. Photosynthetica, 2007, 45 (4):555-561. doi: 10.1007/s11099-007-0095-0
    [29]
    朱宇林, 曹福亮, 汪贵斌, 等. CdPb胁迫对银杏光合特性的影响[J].西北林学院学报, 2006, 21(1):47-50. doi: 10.3969/j.issn.1001-7461.2006.01.010

    Zhu Y L, Cao F L, Wang G B, et al. Effects of Cd single and combined stress on chlorophyll content and photosynthetic characteristics of Ginkgo[J]. Journal of Northwest Forestry University, 2006, 21(1): 47-50. doi: 10.3969/j.issn.1001-7461.2006.01.010
    [30]
    Yang X S, Chen G X, Wei X D, et al. Enhanced antioxidant protection at the early stages of leaf expansion in Ginkgo under natural environmental conditions[J]. Biologia Plantarum, 2012, 56 (1): 181-186. doi: 10.1007/s10535-012-0039-9
    [31]
    Wei X D, Shi D W, Chen G X. Physiological, structural, and proteomic analysis of chloroplasts during natural senescence of Ginkgo leaves[J].Plant Growth Regulation, 2013, 69(2):191-201. doi: 10.1007/s10725-012-9761-8
    [32]
    Deng Z X, Wang Y D, Jiang K J, et al. Molecular cloning and characterization of a novel dehydrin gene from 1[J]. Bioscience Reports, 2006, 26(3):203-215. doi: 10.1007/s10540-006-9016-x
    [33]
    Steduto P, Albrizio R, Giorio P, et al. Gas-exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity[J]. Environmental and Experimental Botany, 2000, 44(3):243-255. doi: 10.1016/S0098-8472(00)00071-X
    [34]
    Guan R, Zhao Y P, Zhang H, et al. Draft genome of the living fossil Ginkgo biloba[J].GigaScience, 2016, 5:1-13. doi: 10.1186%2Fs13742-016-0154-1
    [35]
    姚佳, 刘信宝, 崔鑫, 等.不同NaCl胁迫对苗期扁蓿豆渗透调节物质及光合生理的影响[J].草业学报, 2015, 24(5):91-99. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201505011

    Yao J, Liu X B, Cui X, et al. Effects of NaCl stress on substances linked to osmotic adjustment and on photosynthetic physiology of Melilotoides ruthenica in the seedling stage[J]. Acta Prataculturae Sinica, 2015, 24(5):91-99. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201505011
    [36]
    Tounekti T, Vadel A M, Oñate M, et al. Salt-induced oxidative stress in rosemary plants: damage or protection?[J].Environmental and Experimental Botany, 2011, 71(2):298-305. doi: 10.1016/j.envexpbot.2010.12.016
    [37]
    陈颖, 罗永亚, 邱娜菲, 等. NaCl处理对银杏悬浮培养细胞生长、耐盐性和黄酮积累的影响[J].南京林业大学学报(自然科学版), 2015, 39(6):45-50. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201506010

    Chen Y, Luo Y Y, Qiu N F, et al. Effect of NaCl treatment on growth, salt, tolerance and flavonoids accumulation in Ginkgo biloba suspension cells[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(6): 45-50. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201506010
    [38]
    Flowers T J. Improving crop salt tolerance[J]. Journal of Experimental Botany, 2004, 55(396):307-319. doi: 10.1093/jxb/erh003
    [39]
    Munns R. Comparative physiology of salt and water stress[J]. Plant, Cell and Environment, 2002, 25(2):239-250. doi: 10.1046/j.0016-8025.2001.00808.x
    [40]
    Kramer P J, Boyer J S. Water relations of plants and soils[M]. San Diego: Academic Press, 1995.
    [41]
    陈立群, 李承森.银杏(Ginkgo biloba)叶表皮特征及其气孔的发育[J].植物研究, 2004, 24(4):417-422. doi: 10.3969/j.issn.1673-5102.2004.04.013

    Chen L Q, Li C S. The epidermal characters and stomatal development of Ginkgo biloba[J].Bulletin of Botanical Research, 2004, 24(4):417-422. doi: 10.3969/j.issn.1673-5102.2004.04.013
    [42]
    Chen L Q, Li C S, Chaloner W G, et al. Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change[J]. American Journal of Botany, 2001, 88(7):1309-1315. doi: 10.2307/3558342
    [43]
    Jeffree C E, Baker E A, Holloway P J. Origins of the fine structure of plant epicuticular waxes[J/OL]. Microbiology of Aerial Plant Surface, 1976, 119-158[2017-01-20]. https://doi.org/10.1016/13978-0-12-215050-0.5008-4.
    [44]
    李帅, 赵秋棱, 彭阳, 等.SA、MeJA和ACC处理对甘蓝型油菜叶角质层蜡质组分、结构及渗透性的影响[J].作物学报, 2016, 42(12): 1827-1833. http://d.old.wanfangdata.com.cn/Periodical/zuowxb201612014

    Li S, Zhao Q L, Peng Y, et al. Effects of SA, MeJA, and ACC on leaf cuticular wax constituents, structure and permeability in Brassica napus[J]. Acta Agronomica Sinica, 2016, 42(12): 1827-1833. http://d.old.wanfangdata.com.cn/Periodical/zuowxb201612014
    [45]
    Gülz P G, Müller E, Schmitz K, et al. Chemical composition and surface structures of epicuticular leaf waxes of Ginkgo biloba, Magnolia grandiflora and Liriodendron tulipifera[J] Zeitschrift für Naturforschung Section C, 1992, 47(7-8):516-526. doi: 10.1515/znc-1992-7-805
    [46]
    Eisa S, Hussin S, Geissler N, et al. Effect of NaCl salinity on water relations, photosynthesis and chemical composition of quinoa (Chenopodium quinoa Willd.) as a potential cash crop halophyte[J]. Australian Journal of Crop Science, 2012, 6(2): 357-368.
    [47]
    刘厚诚, 黄红星, 孙光闻, 等.温光处理对节瓜幼苗光合作用的影响[J].沈阳农业大学学报, 2006, 37(3):386-389. doi: 10.3969/j.issn.1000-1700.2006.03.030

    Liu H C, Huang H X, Sun G W, et al. Effect of temperature and light treatments on photosynthesis of chiehqua seedlings[J].Journal of Shenyang Agricultural University, 2006, 37(3):386-389. doi: 10.3969/j.issn.1000-1700.2006.03.030
    [48]
    李征珍, 杨琼, 石莎, 等.蒙古沙冬青光合作用特征及其影响因素[J].生态学杂志, 2017, 36(9): 2481-2488. http://d.old.wanfangdata.com.cn/Periodical/stxzz201709012

    Li Z Z, Yang Q, Shi S, et al. The photosynthetic characteristics of Ammopiptanthus mongolicus and its affecting factors[J].Chinese Journal of Ecology, 2017, 36(9): 2481-2488. http://d.old.wanfangdata.com.cn/Periodical/stxzz201709012
    [49]
    洪文君, 申长青, 黄久香, 等.广东中山四药门花自然与栽培种群光合特性的比较研究[J].西南农业学报, 2017, 30(9):1969-1974. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201709008

    Hong W J, Shen C Q, Huang J X, et al. Photosynthesis characteristics of natural and cultivated population of Loropetalum subcordatum in Zhongshan City, Guangdong[J].Southwest China Journal of Agricultural Sciences, 2017, 30(9):1969-1974. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201709008
    [50]
    曾秀存, 许耀照, 孙万仓, 等.白菜型冬油菜光合日变化特性研究[J].西南农业学报, 2017, 30(11):2490-2496. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201711017

    Zeng X C, Xu Y Z, Sun W C, et al. Study on diurnal variation of photosynthesis for winter rapeseed (Brassica rapes L.)[J].Southwest China Journal of Agricultural Sciences, 2017, 30(11):2490-2496. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201711017
    [51]
    林平, 李吉跃, 陈崇.银杏光合生理生态特性研究[J].北京林业大学学报, 2008, 30(6): 22-29. doi: 10.3321/j.issn:1000-1522.2008.06.004

    Lin P, Li J Y, Chen C. Photosynthetic physioecology characteristics of Ginkgo biloba[J]. Journal of Beijing Forestry University, 2008, 30(6):22-29. doi: 10.3321/j.issn:1000-1522.2008.06.004
    [52]
    Megdiche W, Hessini K, Gharbi F, et al. Photosynthesis and photosystem 2 efficiency of two salt-adapted halophytic seashore Cakile maritima ecotypes[J]. Photosynthetica, 2008, 46 (3): 410-419. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=69ef20e82d45f1b5b87f7e7b80eb3821
    [53]
    Bongi G, Loreto F. Gas-exchange properties of salt-stressed olive (Olea europea L.) leaves[J]. Plant Physiology, 1989, 90(4): 1408-1416. doi: 10.1104/pp.90.4.1408
    [54]
    魏晓东, 陈国详, 施大伟, 等.干旱胁迫对银杏叶片光合系统Ⅱ荧光特性的影响[J].生态学报, 2012, 32(23):7492-7500. http://d.old.wanfangdata.com.cn/Periodical/stxb201223025

    Wei X D, Chen G X, Shi D W, et al. Effects of drought on fluorescence characteristics of photosystem Ⅱ in leaves of Ginkgo biloba[J]. Acta Ecologica Sinica, 2012, 32(23):7492-7500. http://d.old.wanfangdata.com.cn/Periodical/stxb201223025
    [55]
    马娟, 齐曼·尤努斯, 阿巴白克·扎克. NaCl胁迫对一年生黑桑移栽苗光合作用及荧光特性的影响[J].新疆农业科学, 2014, 51(12): 2227-2234. http://d.old.wanfangdata.com.cn/Periodical/xjnykx201412012

    Ma J, Qi M Y, Ababaike Z. Effects of NaCl stress on the characteristics of photosynthesis and chlorophyll fluorescence at one year old stage in black mulberry transplanted seedlings[J].Xinjiang Agricultural Sciences, 2014, 51(12): 2227-2234. http://d.old.wanfangdata.com.cn/Periodical/xjnykx201412012
    [56]
    容晓峰, 许锋, 黄小花, 等. NaCl胁迫对银杏光合作用的影响[J].湖北农业科学, 2013, 52(4):842-845. doi: 10.3969/j.issn.0439-8114.2013.04.028

    Rong X F, Xu F, Huang X H, et al. Effects of NaCl stress on photosynthesis characteristics of Ginkgo biloba[J].Hubei Agricultural Sciences, 2013, 52(4):842-845. doi: 10.3969/j.issn.0439-8114.2013.04.028
    [57]
    Flexas J, Bota J, Galmes J, et al. Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress[J]. Physiologia Plantarum, 2006, 127(3):343-352. doi: 10.1111/j.1399-3054.2006.00621.x
    [58]
    蒋雪梅, 胡进耀, 戚文华, 等.银杏幼苗雌雄株对盐胁迫响应的差别[J].云南植物研究, 2009, 31(5):447-453. http://d.old.wanfangdata.com.cn/Periodical/ynzwyj200905010

    Jiang X M, Hu J Y, Qi W H, et al. Different physiological responses of male and female Ginkgo biloba(Ginkgoaceae)seedlings to salt stress[J]. Acta Botanica Yunnanica, 2009, 31(5):447-453. http://d.old.wanfangdata.com.cn/Periodical/ynzwyj200905010
    [59]
    Satoh K, Smith C M, Fork D C. Effects of salinity on primary processes of photosynthesis in the red alga Porphyra perforata[J]. Plant Physiology, 1983, 73(3): 643-647. doi: 10.1104/pp.73.3.643
    [60]
    Stepien P, Klbus G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress[J]. Biologia Plantarum, 2006, 50 (4): 610-616. doi: 10.1007/s10535-006-0096-z
    [61]
    Wu X X, Ding H D, Zhu Z W, et al. Effects of 24-epibrassinolide on photosynthesis of eggplant (Solanum melongena L.) seedlings under salt stress[J]. African Journal of Biotechnology, 2012, 11(35): 8665-8671.
  • Related Articles

    [1]Lou Minghua, Zhang Huiru, Lei Xiangdong, Bai Chao, Yang Tonghui. Relationship model between stand mean height and mean DBH for natural Quercus spp. broadleaved mixed stands[J]. Journal of Beijing Forestry University, 2020, 42(9): 37-50. DOI: 10.12171/j.1000-1522.20190463
    [2]PENG Mi, GUO Qing-xi.. Minimum area of the community spatial structure of broadleaf-Korean pine forest in Shengshan Mountain, northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(12): 21-27. DOI: 10.13332/j.1000-1522.20150519
    [3]CAO Shan, JIANG Lu-yao, LI Li-hong, YAO Xiao-yun, ZHANG Qiang, HAN Jing-yi, WANG Ying, LI Hui, LU Hai.. Cloning and enzymatic analysis of medium-chain acyl coenzyme A synthetase in Populus trichocarpa.[J]. Journal of Beijing Forestry University, 2016, 38(7): 9-15. DOI: 10.13332/j.1000-1522.20160121
    [4]PAN Chen, REN Bai-guang, GAI Ying. Method of enzymatic synthesis and purification of p-coumaroyl-CoA[J]. Journal of Beijing Forestry University, 2016, 38(3): 120-124. DOI: 10.13332/j.1000-1522.20150366
    [5]SHI Jun-na, LIU Mei-qin, LIU Jie, CHEN Yu-zhen, LU Cun-fu. Sequence analysis and expression pattern of AmSTZF encoding an A20/AN1 zinc finger protein in Ammopiptanthus mongolicus.[J]. Journal of Beijing Forestry University, 2012, 34(2): 103-108.
    [6]FANG Lu-ming, CHAI Hong-ling, TANG Li-hua, XU Ai-jun. An extraction algorithm of a DEM based video visualization domain.[J]. Journal of Beijing Forestry University, 2010, 32(3): 27-32.
    [7]GAO Lin, GU Hong-bo, LI Wen-bin, WANG Nai-kang, WU Xiao-lan. Intelligent control of seeding system based on SPCE061A[J]. Journal of Beijing Forestry University, 2009, 31(5): 126-130.
    [8]WANG Ji-jun, , PEI Tie-fan, WANG An-zhi, GUAN De-xin, JIN Chang-jie. Changes in the mean maximum and minimum temperatures in Changbai Mountain, northeastern China in the past 50 years.[J]. Journal of Beijing Forestry University, 2009, 31(2): 50-57.
    [9]XU Ji-liang, CUI Guo-fa, LI Zhong. Approaches for setting the minimum area of nature reserve[J]. Journal of Beijing Forestry University, 2006, 28(5): 129-132.
    [10]HUI Gang-ying, XU Hai, HU Yan-bo. Model for forecasting the distribution of the minimum tree-to-tree distances[J]. Journal of Beijing Forestry University, 2006, 28(5): 18-21.
  • Cited by

    Periodical cited type(6)

    1. 崔恒久,曾教科,李雯,黄海杰,彭世清,郭冬,蒲金基,周永凯,李辉亮. 腰果CBF基因家族的鉴定及响应冷胁迫的表达模式. 热带作物学报. 2024(03): 473-480 .
    2. 韩立群,张捷,赵钰,梅闯,马凯. 新疆野生核桃JfDREB1A基因的克隆与原核表达分析. 西北农业学报. 2023(07): 1050-1057 .
    3. 赵淑玲,王永斌,蹇小勇,郭兴贵,朱福民,杨静静,霍发喜. 平欧杂交榛研究进展. 现代化农业. 2023(09): 46-49 .
    4. 夏蕴,巢建国,谷巍,盛业龙,王玉卓,惠西珂,王凯,王圆圆. 倒春寒胁迫与恢复对茅苍术生长、生理及关键酶基因的影响. 中成药. 2020(08): 2187-2191 .
    5. 宋静武,彭磊. 核桃CBF基因在低温胁迫中表达. 湖北林业科技. 2019(02): 7-13 .
    6. 刘晓丹,王霞,杨祥波. 非生物胁迫下山腊梅CpCBF基因的表达模式分析. 黑龙江农业科学. 2017(12): 18-21 .

    Other cited types(3)

Catalog

    Article views (3112) PDF downloads (47) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return