Citation: | Zhao Haiyan, Wei Ning, Sun Congcong, Bai Yilin, Zheng Caixia. Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings[J]. Journal of Beijing Forestry University, 2018, 40(11): 28-41. DOI: 10.13332/j.1000-1522.20180258 |
[1] |
Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349. doi: 10.1016/j.ecoenv.2004.06.010
|
[2] |
Bidalia A, Hanief M, Rao K S. Tolerance of Mitragyna parvifolia (Roxb.) Korth. seedlings to NaCl salinity[J]. Photosynthetica, 2017, 55 (2): 231-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b66502f8df1ff64da4cabe399ec2b080
|
[3] |
Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681. doi: 10.1146/annurev.arplant.59.032607.092911
|
[4] |
Apse M P, Blumwald E. Engineering salt tolerance in plants[J]. Current Opinion in Biotechnology, 2002, 13(2):146-150. doi: 10.1016/S0958-1669(02)00298-7
|
[5] |
Rus A, Yokoi S, Sharkhuu A, et al. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots[J]. PNAS, 2001, 98(24):14150-14155. doi: 10.1073/pnas.241501798
|
[6] |
Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes[J]. Annual Review of Plant Biology, 1980, 31(1): 149-190. doi: 10.1146/annurev.pp.31.060180.001053
|
[7] |
Flowers T J, Colmer T D. Salinity tolerance in halophytes[J]. New Phytologist, 2008, 179(4), 945-963. doi: 10.1111/nph.2008.179.issue-4
|
[8] |
刘文英.植物逆境与基因[M].北京:北京理工大学出版社, 2015:1-2.
Liu W Y. Plant stress and gene[M].Beijing: Beijing Institute Technology Press, 2015:1-2.
|
[9] |
Hao L, Zhao Y, Jin D D, et al. Salicylic acid-altering Arabidopsis mutants response to salt stress[J]. Plant and Soil, 2012, 354(1-2):81-95. doi: 10.1007/s11104-011-1046-x
|
[10] |
Gu W T, Zhou L B, Liu R Y, et al. Synergistic responses of NHX, AKT1, and SOS1 in the control of Na+ homeostasis in sweet sorghum mutants induced by 12C6+-ion irradiation[J].Nuclear Science and Techniques, 2018, 29(10):1-7. doi: 10.1007/s41365-017-0341-5
|
[11] |
王丽燕, 赵可夫. NaCl胁迫对海蓬子(Salicornia bigelovii Torr.)离子区室化、光合作用和生长的影响[J].植物生理与分子生物学学报, 2004, 30(1): 94-98. http://d.old.wanfangdata.com.cn/Periodical/zwslxb200401014
Wang L Y, Zhao K F. Effect of NaCl stress on ion compartmentation, photosynthesis and growth of Salicornia bigelovii Torr.[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30(1):94-98. http://d.old.wanfangdata.com.cn/Periodical/zwslxb200401014
|
[12] |
Dunn G M, Neales T F. Are the effects of salinity on growth and leaf gas exchange related?[J].Photosynthetica, 1994, 29(1):33-42.
|
[13] |
郑彩霞, 邱箭, 姜春宁, 等.胡杨多形叶气孔特征及光合特性的比较[J].林业科学, 2006, 42(8):19-24. http://d.old.wanfangdata.com.cn/Periodical/lykx200608004
Zheng C X, Qiu J, Jiang C N, et al. Comparison of characteristics of stomas and photosynthesis of Populus euphratica polymorphic leaves[J]. Scientia Silvae Sinicae, 2006, 42(8):19-24. http://d.old.wanfangdata.com.cn/Periodical/lykx200608004
|
[14] |
Feng Z T, Deng Y Q, Fan H, et al. Effects of NaCl stress on the growth and photosynthetic characteristics of Ulmus pumila L. seedlings in sand culture[J]. Photosynthetica, 2014, 52(2): 313-320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=550077ebc4982b55d31d2d2f4a2a4872
|
[15] |
赵可夫, 范海.盐生植物及其对盐渍生境的适应生理[M].北京:科学出版社, 2005:71-74.
Zhao K F, Fan H. Halophytes and their adaptive physiology to saline habitats[M].Beijing: Science Press, 2005:71-74.
|
[16] |
Grieve C M, Francois L E, Maas E V. Salinity affects the timing of phasic development in spring wheat[J]. Crop Science, 1994, 34(6):1544-1549. doi: 10.2135/cropsci1994.0011183X003400060024x
|
[17] |
Bernstein N, Silk W K, Lauchli A. Growth and development of sorghum leaves under conditions of NaCl stress: possible role of some mineral elements in growth inhibition[J]. Planta, 1995, 196(4):699-705. doi: 10.1007/BF01106763
|
[18] |
Everard J D, Gucci R, Kann S C, et al. Gas exchange and carbon partitioning in the leaves of celery (Aptium Graveolens L.) at various leaves of root zone salinity[J].Plant Physiol, 1994, 106(1), 106:281-292. doi: 10.1104/pp.106.1.281
|
[19] |
Mittal S, Kumari N, Sharma V. Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes[J]. Plant Physiology Biochemistry, 2012, 54: 17-26. doi: 10.1016/j.plaphy.2012.02.003
|
[20] |
Parida A K, Das A B, Mittra B. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora[J].Trees, 2004, 18(2):167-174. doi: 10.1007/s00468-003-0293-8
|
[21] |
López-Climent M F, Arbona V, Pérez-Clemente R M, et al. Relationship between salt tolerance and photosynthetic machinery performance in citrus[J]. Environmental and Experimental Botany, 2008, 62(2): 176-184. doi: 10.1016/j.envexpbot.2007.08.002
|
[22] |
姚立生, 崔世友, 孙明法.植物耐盐性多学科的研究进展[M].北京:中国农业科学技术出版社, 2014.
Yao L S, Cui S Y, Sun M F. Advances in multidisciplinary research on salt tolerance in plants[M].Beijing: China Agricultural Science and Technology Press, 2014.
|
[23] |
柏锡, 朱延明, 李丽文, 等.转OsMAPK4基因水稻耐盐性分析[J].东北农业大学学报, 2009, 40(8):53-57. doi: 10.3969/j.issn.1005-9369.2009.08.012
Bai X, Zhu Y M, Li L W, et al. Salt resistance analysis of rice transformed with OsMAPK4[J].Journal of Northeast Agricultural University, 2009, 40(8):53-57. doi: 10.3969/j.issn.1005-9369.2009.08.012
|
[24] |
Major R T. The ginkgo, the most ancient living tree[J]. Science, 1967, 157: 1270-1273. doi: 10.1126/science.157.3794.1270
|
[25] |
曹福亮.中国银杏[M].南京:江苏科学技术出版社, 2002.
Cao F L. Chinese ginkgo[M]. Nanjing: Jiangsu Science and Technology Press, 2002.
|
[26] |
汪贵斌, 曹福亮, 景茂, 等.水分胁迫对银杏叶片叶肉细胞超微结构的影响[J].南京林业大学学报(自然科学版), 2008, 32(5):65-70. doi: 10.3969/j.issn.1000-2006.2008.05.015
Wang G B, Cao F L, Jing M, et al. The effect of water stress on mesophyll cell ultrastructure of Ginkgo[J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2008, 32(5):65-70. doi: 10.3969/j.issn.1000-2006.2008.05.015
|
[27] |
Wang Y W, Sun L G, Xu J G, et al. Physiological and growth characteristics of Ginkgo biloba L. exposed to open fleld and shade enclosure during the reproductive stage[J]. Acta Physiologiae Plantarum, 2014, 36(10): 2671-2681. doi: 10.1007/s11738-014-1638-1
|
[28] |
He X Y, Fu S L, Chen W, et al. Changes in effects of ozone exposure on growth, photosynthesis, and respiration of Ginkgo biloba in Shenyang urban area[J]. Photosynthetica, 2007, 45 (4):555-561. doi: 10.1007/s11099-007-0095-0
|
[29] |
朱宇林, 曹福亮, 汪贵斌, 等. Cd、Pb胁迫对银杏光合特性的影响[J].西北林学院学报, 2006, 21(1):47-50. doi: 10.3969/j.issn.1001-7461.2006.01.010
Zhu Y L, Cao F L, Wang G B, et al. Effects of Cd single and combined stress on chlorophyll content and photosynthetic characteristics of Ginkgo[J]. Journal of Northwest Forestry University, 2006, 21(1): 47-50. doi: 10.3969/j.issn.1001-7461.2006.01.010
|
[30] |
Yang X S, Chen G X, Wei X D, et al. Enhanced antioxidant protection at the early stages of leaf expansion in Ginkgo under natural environmental conditions[J]. Biologia Plantarum, 2012, 56 (1): 181-186. doi: 10.1007/s10535-012-0039-9
|
[31] |
Wei X D, Shi D W, Chen G X. Physiological, structural, and proteomic analysis of chloroplasts during natural senescence of Ginkgo leaves[J].Plant Growth Regulation, 2013, 69(2):191-201. doi: 10.1007/s10725-012-9761-8
|
[32] |
Deng Z X, Wang Y D, Jiang K J, et al. Molecular cloning and characterization of a novel dehydrin gene from 1[J]. Bioscience Reports, 2006, 26(3):203-215. doi: 10.1007/s10540-006-9016-x
|
[33] |
Steduto P, Albrizio R, Giorio P, et al. Gas-exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity[J]. Environmental and Experimental Botany, 2000, 44(3):243-255. doi: 10.1016/S0098-8472(00)00071-X
|
[34] |
Guan R, Zhao Y P, Zhang H, et al. Draft genome of the living fossil Ginkgo biloba[J].GigaScience, 2016, 5:1-13. doi: 10.1186%2Fs13742-016-0154-1
|
[35] |
姚佳, 刘信宝, 崔鑫, 等.不同NaCl胁迫对苗期扁蓿豆渗透调节物质及光合生理的影响[J].草业学报, 2015, 24(5):91-99. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201505011
Yao J, Liu X B, Cui X, et al. Effects of NaCl stress on substances linked to osmotic adjustment and on photosynthetic physiology of Melilotoides ruthenica in the seedling stage[J]. Acta Prataculturae Sinica, 2015, 24(5):91-99. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201505011
|
[36] |
Tounekti T, Vadel A M, Oñate M, et al. Salt-induced oxidative stress in rosemary plants: damage or protection?[J].Environmental and Experimental Botany, 2011, 71(2):298-305. doi: 10.1016/j.envexpbot.2010.12.016
|
[37] |
陈颖, 罗永亚, 邱娜菲, 等. NaCl处理对银杏悬浮培养细胞生长、耐盐性和黄酮积累的影响[J].南京林业大学学报(自然科学版), 2015, 39(6):45-50. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201506010
Chen Y, Luo Y Y, Qiu N F, et al. Effect of NaCl treatment on growth, salt, tolerance and flavonoids accumulation in Ginkgo biloba suspension cells[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(6): 45-50. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201506010
|
[38] |
Flowers T J. Improving crop salt tolerance[J]. Journal of Experimental Botany, 2004, 55(396):307-319. doi: 10.1093/jxb/erh003
|
[39] |
Munns R. Comparative physiology of salt and water stress[J]. Plant, Cell and Environment, 2002, 25(2):239-250. doi: 10.1046/j.0016-8025.2001.00808.x
|
[40] |
Kramer P J, Boyer J S. Water relations of plants and soils[M]. San Diego: Academic Press, 1995.
|
[41] |
陈立群, 李承森.银杏(Ginkgo biloba)叶表皮特征及其气孔的发育[J].植物研究, 2004, 24(4):417-422. doi: 10.3969/j.issn.1673-5102.2004.04.013
Chen L Q, Li C S. The epidermal characters and stomatal development of Ginkgo biloba[J].Bulletin of Botanical Research, 2004, 24(4):417-422. doi: 10.3969/j.issn.1673-5102.2004.04.013
|
[42] |
Chen L Q, Li C S, Chaloner W G, et al. Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change[J]. American Journal of Botany, 2001, 88(7):1309-1315. doi: 10.2307/3558342
|
[43] |
Jeffree C E, Baker E A, Holloway P J. Origins of the fine structure of plant epicuticular waxes[J/OL]. Microbiology of Aerial Plant Surface, 1976, 119-158[2017-01-20]. https://doi.org/10.1016/13978-0-12-215050-0.5008-4.
|
[44] |
李帅, 赵秋棱, 彭阳, 等.SA、MeJA和ACC处理对甘蓝型油菜叶角质层蜡质组分、结构及渗透性的影响[J].作物学报, 2016, 42(12): 1827-1833. http://d.old.wanfangdata.com.cn/Periodical/zuowxb201612014
Li S, Zhao Q L, Peng Y, et al. Effects of SA, MeJA, and ACC on leaf cuticular wax constituents, structure and permeability in Brassica napus[J]. Acta Agronomica Sinica, 2016, 42(12): 1827-1833. http://d.old.wanfangdata.com.cn/Periodical/zuowxb201612014
|
[45] |
Gülz P G, Müller E, Schmitz K, et al. Chemical composition and surface structures of epicuticular leaf waxes of Ginkgo biloba, Magnolia grandiflora and Liriodendron tulipifera[J] Zeitschrift für Naturforschung Section C, 1992, 47(7-8):516-526. doi: 10.1515/znc-1992-7-805
|
[46] |
Eisa S, Hussin S, Geissler N, et al. Effect of NaCl salinity on water relations, photosynthesis and chemical composition of quinoa (Chenopodium quinoa Willd.) as a potential cash crop halophyte[J]. Australian Journal of Crop Science, 2012, 6(2): 357-368.
|
[47] |
刘厚诚, 黄红星, 孙光闻, 等.温光处理对节瓜幼苗光合作用的影响[J].沈阳农业大学学报, 2006, 37(3):386-389. doi: 10.3969/j.issn.1000-1700.2006.03.030
Liu H C, Huang H X, Sun G W, et al. Effect of temperature and light treatments on photosynthesis of chiehqua seedlings[J].Journal of Shenyang Agricultural University, 2006, 37(3):386-389. doi: 10.3969/j.issn.1000-1700.2006.03.030
|
[48] |
李征珍, 杨琼, 石莎, 等.蒙古沙冬青光合作用特征及其影响因素[J].生态学杂志, 2017, 36(9): 2481-2488. http://d.old.wanfangdata.com.cn/Periodical/stxzz201709012
Li Z Z, Yang Q, Shi S, et al. The photosynthetic characteristics of Ammopiptanthus mongolicus and its affecting factors[J].Chinese Journal of Ecology, 2017, 36(9): 2481-2488. http://d.old.wanfangdata.com.cn/Periodical/stxzz201709012
|
[49] |
洪文君, 申长青, 黄久香, 等.广东中山四药门花自然与栽培种群光合特性的比较研究[J].西南农业学报, 2017, 30(9):1969-1974. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201709008
Hong W J, Shen C Q, Huang J X, et al. Photosynthesis characteristics of natural and cultivated population of Loropetalum subcordatum in Zhongshan City, Guangdong[J].Southwest China Journal of Agricultural Sciences, 2017, 30(9):1969-1974. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201709008
|
[50] |
曾秀存, 许耀照, 孙万仓, 等.白菜型冬油菜光合日变化特性研究[J].西南农业学报, 2017, 30(11):2490-2496. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201711017
Zeng X C, Xu Y Z, Sun W C, et al. Study on diurnal variation of photosynthesis for winter rapeseed (Brassica rapes L.)[J].Southwest China Journal of Agricultural Sciences, 2017, 30(11):2490-2496. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201711017
|
[51] |
林平, 李吉跃, 陈崇.银杏光合生理生态特性研究[J].北京林业大学学报, 2008, 30(6): 22-29. doi: 10.3321/j.issn:1000-1522.2008.06.004
Lin P, Li J Y, Chen C. Photosynthetic physioecology characteristics of Ginkgo biloba[J]. Journal of Beijing Forestry University, 2008, 30(6):22-29. doi: 10.3321/j.issn:1000-1522.2008.06.004
|
[52] |
Megdiche W, Hessini K, Gharbi F, et al. Photosynthesis and photosystem 2 efficiency of two salt-adapted halophytic seashore Cakile maritima ecotypes[J]. Photosynthetica, 2008, 46 (3): 410-419. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=69ef20e82d45f1b5b87f7e7b80eb3821
|
[53] |
Bongi G, Loreto F. Gas-exchange properties of salt-stressed olive (Olea europea L.) leaves[J]. Plant Physiology, 1989, 90(4): 1408-1416. doi: 10.1104/pp.90.4.1408
|
[54] |
魏晓东, 陈国详, 施大伟, 等.干旱胁迫对银杏叶片光合系统Ⅱ荧光特性的影响[J].生态学报, 2012, 32(23):7492-7500. http://d.old.wanfangdata.com.cn/Periodical/stxb201223025
Wei X D, Chen G X, Shi D W, et al. Effects of drought on fluorescence characteristics of photosystem Ⅱ in leaves of Ginkgo biloba[J]. Acta Ecologica Sinica, 2012, 32(23):7492-7500. http://d.old.wanfangdata.com.cn/Periodical/stxb201223025
|
[55] |
马娟, 齐曼·尤努斯, 阿巴白克·扎克. NaCl胁迫对一年生黑桑移栽苗光合作用及荧光特性的影响[J].新疆农业科学, 2014, 51(12): 2227-2234. http://d.old.wanfangdata.com.cn/Periodical/xjnykx201412012
Ma J, Qi M Y, Ababaike Z. Effects of NaCl stress on the characteristics of photosynthesis and chlorophyll fluorescence at one year old stage in black mulberry transplanted seedlings[J].Xinjiang Agricultural Sciences, 2014, 51(12): 2227-2234. http://d.old.wanfangdata.com.cn/Periodical/xjnykx201412012
|
[56] |
容晓峰, 许锋, 黄小花, 等. NaCl胁迫对银杏光合作用的影响[J].湖北农业科学, 2013, 52(4):842-845. doi: 10.3969/j.issn.0439-8114.2013.04.028
Rong X F, Xu F, Huang X H, et al. Effects of NaCl stress on photosynthesis characteristics of Ginkgo biloba[J].Hubei Agricultural Sciences, 2013, 52(4):842-845. doi: 10.3969/j.issn.0439-8114.2013.04.028
|
[57] |
Flexas J, Bota J, Galmes J, et al. Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress[J]. Physiologia Plantarum, 2006, 127(3):343-352. doi: 10.1111/j.1399-3054.2006.00621.x
|
[58] |
蒋雪梅, 胡进耀, 戚文华, 等.银杏幼苗雌雄株对盐胁迫响应的差别[J].云南植物研究, 2009, 31(5):447-453. http://d.old.wanfangdata.com.cn/Periodical/ynzwyj200905010
Jiang X M, Hu J Y, Qi W H, et al. Different physiological responses of male and female Ginkgo biloba(Ginkgoaceae)seedlings to salt stress[J]. Acta Botanica Yunnanica, 2009, 31(5):447-453. http://d.old.wanfangdata.com.cn/Periodical/ynzwyj200905010
|
[59] |
Satoh K, Smith C M, Fork D C. Effects of salinity on primary processes of photosynthesis in the red alga Porphyra perforata[J]. Plant Physiology, 1983, 73(3): 643-647. doi: 10.1104/pp.73.3.643
|
[60] |
Stepien P, Klbus G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress[J]. Biologia Plantarum, 2006, 50 (4): 610-616. doi: 10.1007/s10535-006-0096-z
|
[61] |
Wu X X, Ding H D, Zhu Z W, et al. Effects of 24-epibrassinolide on photosynthesis of eggplant (Solanum melongena L.) seedlings under salt stress[J]. African Journal of Biotechnology, 2012, 11(35): 8665-8671.
|
[1] | Lou Minghua, Zhang Huiru, Lei Xiangdong, Bai Chao, Yang Tonghui. Relationship model between stand mean height and mean DBH for natural Quercus spp. broadleaved mixed stands[J]. Journal of Beijing Forestry University, 2020, 42(9): 37-50. DOI: 10.12171/j.1000-1522.20190463 |
[2] | PENG Mi, GUO Qing-xi.. Minimum area of the community spatial structure of broadleaf-Korean pine forest in Shengshan Mountain, northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(12): 21-27. DOI: 10.13332/j.1000-1522.20150519 |
[3] | CAO Shan, JIANG Lu-yao, LI Li-hong, YAO Xiao-yun, ZHANG Qiang, HAN Jing-yi, WANG Ying, LI Hui, LU Hai.. Cloning and enzymatic analysis of medium-chain acyl coenzyme A synthetase in Populus trichocarpa.[J]. Journal of Beijing Forestry University, 2016, 38(7): 9-15. DOI: 10.13332/j.1000-1522.20160121 |
[4] | PAN Chen, REN Bai-guang, GAI Ying. Method of enzymatic synthesis and purification of p-coumaroyl-CoA[J]. Journal of Beijing Forestry University, 2016, 38(3): 120-124. DOI: 10.13332/j.1000-1522.20150366 |
[5] | SHI Jun-na, LIU Mei-qin, LIU Jie, CHEN Yu-zhen, LU Cun-fu. Sequence analysis and expression pattern of AmSTZF encoding an A20/AN1 zinc finger protein in Ammopiptanthus mongolicus.[J]. Journal of Beijing Forestry University, 2012, 34(2): 103-108. |
[6] | FANG Lu-ming, CHAI Hong-ling, TANG Li-hua, XU Ai-jun. An extraction algorithm of a DEM based video visualization domain.[J]. Journal of Beijing Forestry University, 2010, 32(3): 27-32. |
[7] | GAO Lin, GU Hong-bo, LI Wen-bin, WANG Nai-kang, WU Xiao-lan. Intelligent control of seeding system based on SPCE061A[J]. Journal of Beijing Forestry University, 2009, 31(5): 126-130. |
[8] | WANG Ji-jun, , PEI Tie-fan, WANG An-zhi, GUAN De-xin, JIN Chang-jie. Changes in the mean maximum and minimum temperatures in Changbai Mountain, northeastern China in the past 50 years.[J]. Journal of Beijing Forestry University, 2009, 31(2): 50-57. |
[9] | XU Ji-liang, CUI Guo-fa, LI Zhong. Approaches for setting the minimum area of nature reserve[J]. Journal of Beijing Forestry University, 2006, 28(5): 129-132. |
[10] | HUI Gang-ying, XU Hai, HU Yan-bo. Model for forecasting the distribution of the minimum tree-to-tree distances[J]. Journal of Beijing Forestry University, 2006, 28(5): 18-21. |