Citation: | Lian Zhenghua, Zhang Chunyu, Cheng Yanxia, Xin Benhua. Geographical variations of functional traits of typical tree species in northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 42-48. DOI: 10.13332/j.1000-1522.20180352 |
[1] |
何念鹏, 刘聪聪, 张佳慧, 等. 植物性状研究的机遇与挑战: 从器官到群落[J]. 生态学报, 2018, 38(19):6787−6796.
He N P, Liu C C, Zhang J H, et al. Perspectives and challenges in pant traits: from organs to communities[J]. Acta Ecologica Sinica, 2018, 38(19): 6787−6796.
|
[2] |
Jhc C, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4): 335−380. doi: 10.1071/BT02124
|
[3] |
Reich P B. The evolution of plant functional variation: traits, spectra, and strategies[J]. International Journal of Plant Sciences, 2003, 164(S3): S143−S164. doi: 10.1086/374368
|
[4] |
Diaz S, Cabido M, Casanoves F. Plant functional traits and environmental filters at a regional scale[J]. Journal of Vegetation Science, 1998, 9(1): 113−122. doi: 10.2307/3237229
|
[5] |
Westoby M. A leaf-height-seed (LHS) plant ecology strategy scheme[J]. Plant & Soil, 1998, 199(2): 213−227.
|
[6] |
Guittar J, Goldberg D, Klanderud K, et al. Can trait patterns along gradients predict plant community responses to climate change[J]. Ecology, 2016, 97(10): 2791. doi: 10.1002/ecy.1500
|
[7] |
Falster D S, Westoby M. Plant height and evolutionary games[J]. Trends in Ecology & Evolution, 2003, 18(7): 337−343.
|
[8] |
刘金环, 曾德慧, Don Koo LEE. 科尔沁沙地东南部地区主要植物叶片性状及其相互关系[J]. 生态学杂志, 2006, 25(8):921−925. doi: 10.3321/j.issn:1000-4890.2006.08.010
Liu J H, Zeng D H, Lee D K. Leaf traits and their interrelationships of main plant species in southeast Horqin sandy land[J]. Chinese Journal of Ecology, 2006, 25(8): 921−925. doi: 10.3321/j.issn:1000-4890.2006.08.010
|
[9] |
Swenson N G, Enquist B J. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation[J]. American Journal of Botany, 2007, 94(3): 451−459. doi: 10.3732/ajb.94.3.451
|
[10] |
Villar R, Merino J. Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems[J]. New Phytologist, 2001, 151(1): 213−226. doi: 10.1046/j.1469-8137.2001.00147.x
|
[11] |
刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4):325−339.
Liu X J, Ma K P. Advances in plant functional traits[J]. Scientia Sinica Vitae, 2015, 45(4): 325−339.
|
[12] |
Niinemets Ü. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs[J]. Ecology, 2001, 82(2): 453−469. doi: 10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2
|
[13] |
Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats[J]. Functional Ecology, 2001, 15(4): 423−434. doi: 10.1046/j.0269-8463.2001.00542.x
|
[14] |
Wright I J, Reich P B, Cornelissen J H C, et al. Assessing the generality of global leaf trait relationships[J]. New Phytologist, 2010, 166(2): 485−496.
|
[15] |
Santiago L S, Wright S J. Leaf functional traits of tropical forest plants in relation to growth form[J]. Functional Ecology, 2010, 21(1): 19−27.
|
[16] |
Falster D S, Warton D I, Wright I J. User’s guide to SMATR: standardised major axis tests and routines: Version 2.0[M/OL]. 2006 [2018−06−06]. http://www.bio.mq.edu.au/ecology/SMATR/.
|
[17] |
Westoby M. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821. doi: 10.1038/nature02403
|
[18] |
Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum[J]. Ecology Letters, 2010, 12(4): 351−366.
|
[19] |
Wright I J, Ackerly D D, Bongers F, et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests[J]. Annals of Botany, 2007, 99: 1003−1015.
|
[20] |
Moles A T, Warton D I, Warman L, et al. Global patterns in plant height[J]. Journal of Ecology, 2009, 97(5): 923−932. doi: 10.1111/jec.2009.97.issue-5
|
[21] |
Wang R L, Yu G R, He N P, et al. Latitudinal variation of leaf morphological traits from species to communities along a forest transect in eastern China[J]. Journal of Geographical Sciences, 2016, 26(1): 15−26. doi: 10.1007/s11442-016-1251-x
|
[22] |
方精云. 也论我国东部植被带的划分[J]. 植物学报, 2001, 43(5):522−533. doi: 10.3321/j.issn:1672-9072.2001.05.013
Fang J Y. Re-discussion about the forest vegetation zonation in Eastern China[J]. Acta Botanica Sinica, 2001, 43(5): 522−533. doi: 10.3321/j.issn:1672-9072.2001.05.013
|
[23] |
Markesteijn L, Poorter L. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance[J]. Journal of Ecology, 2009, 97(2): 311−325. doi: 10.1111/jec.2009.97.issue-2
|
[24] |
Poorter L, Markesteijn L. Seedling traits determine drought tolerance of tropical tree species[J]. Biotropica, 2008, 40(3): 321−331. doi: 10.1111/(ISSN)1744-7429
|
[25] |
Cornwell W K, Ackerly D D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California[J]. Ecological Monographs, 2009, 79(1): 109−126. doi: 10.1890/07-1134.1
|
[1] | Sun Jingyi, Wang Qi, Liu Jianfeng, Chang Ermei, Jia Zirui. Geographical variations and its influencing factors in the cork bark thickness of Quercus variabilis[J]. Journal of Beijing Forestry University, 2023, 45(12): 11-18. DOI: 10.12171/j.1000-1522.20230029 |
[2] | Yang Xin, Wang Jianjun, Du Zhi, Wang Wenwen, Meng Jinghui. Development of individual-tree diameter increment model for natural Larix gmelinii forests based on climatic factors[J]. Journal of Beijing Forestry University, 2022, 44(8): 1-11. DOI: 10.12171/j.1000-1522.20210353 |
[3] | Chen Keyi, Zhang Huiru, Zhang Bo, He Youjun. Spatial distribution simulation of recruitment trees of natural secondary forest based on geographically weighted regression[J]. Journal of Beijing Forestry University, 2021, 43(2): 1-9. DOI: 10.12171/j.1000-1522.20200157 |
[4] | Li Jinhang, Zhu Jiyou, Catherine Mhae B. Jandug, Zhao Kai, Xu Chengyang. Relationship between leaf functional trait variation of Cotinus coggygria seedling and location geographical-climatic factors under drought stress[J]. Journal of Beijing Forestry University, 2020, 42(2): 68-78. DOI: 10.12171/j.1000-1522.20190079 |
[5] | Chen Xinyu, Meng Jingxiang, Zhou Xianqing, Yuan Huwei, Niu Shihui, Li Yue. Genetic variation of needle morphology and anatomical traits and physiological traits among Pinus tabuliformis geographic populations[J]. Journal of Beijing Forestry University, 2019, 41(7): 19-30. DOI: 10.13332/j.1000-1522.20190170 |
[6] | He Xia, Deng Cheng, Yang Jiaqi, Zhang Deng, Zhang Mengjie, Liao Boyong, Wang Fang, Chen Xiaoyang. Geographic variation of growth traits in early stage for Melia azedarach among different provenances[J]. Journal of Beijing Forestry University, 2018, 40(7): 45-54. DOI: 10.13332/j.1000-1522.20170321 |
[7] | GAO Ying, WU Yu-xuan, ZHANG Ying, ZHAO Jin-ping, XU Zhi-gang. Modulization and standardized system of modern light wood frame house[J]. Journal of Beijing Forestry University, 2017, 39(8): 111-118. DOI: 10.13332/j.1000-1522.20170022 |
[8] | SUN Cao-wen, JIA Li-ming, YE Hong-lian, GAO Yuan, XIONG Chen-yan, WENG Xue-huang. Geographic variation evaluating and correlation with fatty acid composition of economic characters of Sapindus spp. fruits.[J]. Journal of Beijing Forestry University, 2016, 38(12): 73-83. DOI: 10.13332/j.1000-1522.20160143 |
[9] | PEI Shun-xiang, GUO Quan-shui, JIA Yu-bin, XIN Xue-bing, XU Ge-xi. Integral regressive analysis on the responses of first flowering date of eight woody species to climate change in Baoding, China[J]. Journal of Beijing Forestry University, 2015, 37(7): 11-18. DOI: 10.13332/j.1000-1522.20130423 |
[10] | CHEN Li-jun, DENG Xiao-mei, DING Mei-mei, LIU Ming-qian, LI Jun-cheng, HUI Wen-kai, #br# LIAO Bo-yong, CHEN Xiao-yang. Geographic variation in traits of fruit stones and seeds of Melia azedarach.[J]. Journal of Beijing Forestry University, 2014, 36(1): 15-20. |