• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yao Jie, Song Zilong, Zhang Chunyu, Meng Lingjun, Zhao Xiuhai. Effects of distance and density dependence on seedling growth in a broadleaved Korean pine forest in Jiaohe of Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(5): 108-117. DOI: 10.13332/j.1000-1522.20190027
Citation: Yao Jie, Song Zilong, Zhang Chunyu, Meng Lingjun, Zhao Xiuhai. Effects of distance and density dependence on seedling growth in a broadleaved Korean pine forest in Jiaohe of Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(5): 108-117. DOI: 10.13332/j.1000-1522.20190027

Effects of distance and density dependence on seedling growth in a broadleaved Korean pine forest in Jiaohe of Jilin Province, northeastern China

More Information
  • Received Date: December 26, 2018
  • Revised Date: January 14, 2019
  • Available Online: April 29, 2019
  • Published Date: April 30, 2019
  • ObjectiveElucidating the maintenance of diversity in plant communities has long been a challenge for ecologists and a key goal of community ecology. Reports on the effects of distance and density dependence on seedling growth in temperate forests are currently lacking. We explore whether there is a distance or density dependence in temperate forests. If so, whether soil pathogens are the driving factors for distance or density dependence.
    MethodBased on the greenhouse experiment, we selected three tree species in a broadleaved Korean pine forest in Jiaohe in Jilin Province of northeastern China to monitor the seedling growth for 4 months. We analyzed the effects of the seedling density, distance to adult tree (parental distances) and soil sterilization on seedling height growth and seedling biomass.
    ResultThe results showed that the height growth of Pinus koraiensis, Fraxinus mandschurica and Phellodendron amurense seedlings at low seedling density was significantly higher than that of high seedling density, indicating that there was significantly negative density dependence in our temperate forest. However, soil sterilization can only significantly increase the height growth of F. mandschurica seedlings. Although the height growth of F. mandschurica and P. amurense seedlings was significantly affected by the parental distances, it didn’t show the trend that the seedling height grew well with increasing distance from the adult tree. Thus, our results didn’t meet the phenomenon of distance dependence growth. We found that the root, stem, leaf and total biomass of F. mandschurica and P. amurense seedlings were only significantly correlated with seedling density. The root, stem, leaf and total biomass at low seedling density were significantly higher than that of high seedling density, indicating that biomass accumulation was also affected by density dependence growth. The parental distances and soil sterilization, however, had no significant effect on seedling root, stem, leaf and total biomass.
    ConclusionThe results show that there is obvious negative density dependence growth in the temperate forest, but there is no distance dependence growth. This study suggests that the factor that causes the negative density dependence growth maybe the strong intraspecific competition, while the role of soil pathogens is very limited. Our results do not support the distance dependence growth. Second, the lack of evidence of distance dependence growth indicates that the soil pathogens in our temperate forest do not have intense host specificity. The generalist soil pathogens may play a role in negative density dependence growth. In the future, it is necessary to further explore the relative importance of the intra- and inter-specific competition and generalist soil pathogens in driving the seedling growth.
  • [1]
    Schupp E W. The Janzen-Connell model for tropical tree diversity: population implications and the importance of spatial scale[J]. American Naturalist, 1992, 140(3): 526−530. doi: 10.1086/285426
    [2]
    Hubbell S P, Ahumada J A, Condit R, et al. Local neighborhood effects on long-term survival of individual trees in a neotropical forest[J]. Ecological Research, 2001, 16(5): 859−875. doi: 10.1046/j.1440-1703.2001.00445.x
    [3]
    Wright J S. Plant diversity in tropical forests: a review of mechanisms of species coexistence[J]. Oecologia, 2002, 130(1): 1−14. doi: 10.1007/s004420100809
    [4]
    Bell G. The distribution of abundance in neutral communities[J]. American Naturalist, 2000, 155(5): 606−617. doi: 10.1086/303345
    [5]
    Janzen D H. Herbivores and the number of three species in tropical forests[J]. American Naturalist, 1970, 104: 501−528. doi: 10.1086/282687
    [6]
    Connell J H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees[M]// Boer P J D, Gradwell G R. Dynamics of populations. Wageningen: Centre for Agricultural Publishing and Documentation, 1971: 298−313.
    [7]
    Freckleton R P, Lewis O T. Pathogens, density dependence and the coexistence of tropical trees[J]. Proceedings of the Royal Society B: Biological Sciences, 2006, 273: 2909−2916. doi: 10.1098/rspb.2006.3660
    [8]
    Harms K E, Wright S J, Calderón O, et al. Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest[J]. Nature, 2000, 404: 493−495. doi: 10.1038/35006630
    [9]
    Packer A, Clay K. Soil pathogens and spatial patterns of seedling mortality in a temperate tree[J]. Nature, 2000, 404: 278−281. doi: 10.1038/35005072
    [10]
    Bell T, Freckleton R P, Lewis O T. Plant pathogens drive density-dependent seedling mortality in a tropical tree[J]. Ecology Letters, 2006, 9(5): 569−574. doi: 10.1111/ele.2006.9.issue-5
    [11]
    Petermann J S, Fergus A J F, Turnbull L A, et al. Janzen-Connell effects are widespread and strong enough to maintain diversity in grasslands[J]. Ecology, 2008, 89(9): 2399−2406. doi: 10.1890/07-2056.1
    [12]
    Li R B, Yu S X, Wan Y F, et al. Distance-dependent effects of soil-derived biota on seedling survival of the tropical tree legume Ormosia semicastrata[J]. Journal of Vegetation Science, 2009, 20(3): 527−534. doi: 10.1111/jvs.2009.20.issue-3
    [13]
    Bagchi R, Swinfield T, Gallery R E, et al. Testing the Janzen-Connell mechanism: pathogens cause overcompensating density dependence in a tropical tree[J]. Ecology Letters, 2010, 13(10): 1262−1269. doi: 10.1111/j.1461-0248.2010.01520.x
    [14]
    Mangan S A, Schnitzer S A, Herre E A, et al. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest[J]. Nature, 2010, 466: 752−756. doi: 10.1038/nature09273
    [15]
    Konno M, Iwamoto S, Seiwa K. Specialization of a fungal pathogen on host tree species in a cross-inoculation experiment[J]. Journal of Ecology, 2011, 99(6): 1394−1401. doi: 10.1111/jec.2011.99.issue-6
    [16]
    Swamy V, Terborgh J, Dexter K G, et al. Are all seeds equal? Spatially explicit comparisons of seed fall and sapling recruitment in a tropical forest[J]. Ecology Letters, 2011, 14(2): 195−201. doi: 10.1111/j.1461-0248.2010.01571.x
    [17]
    Liu X, Liang M, Etienne R S, et al. Experimental evidence for a phylogenetic Janzen-Connell effect in a subtropical forest[J]. Ecology Letters, 2012, 15(2): 111−118. doi: 10.1111/ele.2011.15.issue-2
    [18]
    Liu Y, Yu S, Xie Z, et al. Analysis of a negative plant-soil feedback in a subtropical monsoon forest[J]. Journal of Ecology, 2012, 100(4): 1019−1028. doi: 10.1111/jec.2012.100.issue-4
    [19]
    Liu Y, Fang S, Chesson P, et al. The effect of soil-borne pathogens depends on the abundance of host tree species[J]. Nature Communications, 2015, 6(1): 10017. doi: 10.1038/ncomms10017
    [20]
    Liang M, Liu X, Gilbert G S, et al. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi[J]. Ecology Letters, 2016, 19(12): 1448−1456. doi: 10.1111/ele.2016.19.issue-12
    [21]
    Comita L S, Queenborough S A, Murphy S J, et al. Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival[J]. Journal of Ecology, 2014, 102(4): 845−856. doi: 10.1111/1365-2745.12232
    [22]
    Terborgh J. Enemies maintain hyperdiverse tropical forests[J]. American Naturalist, 2012, 179(3): 303−314. doi: 10.1086/664183
    [23]
    Bagchi R, Gallery R E, Gripenberg S, et al. Pathogens and insect herbivores drive rainforest plant diversity and composition[J]. Nature, 2014, 506: 85−88. doi: 10.1038/nature12911
    [24]
    Hyatt L A, Rosenberg M S, Howard T G, et al. The distance dependence prediction of the Janzen-Connell hypothesis: a meta-analysis[J]. Oikos, 2003, 103(3): 590−602. doi: 10.1034/j.1600-0706.2003.12235.x
    [25]
    Carson W P, Jill T A, Egbert G L, et al. Challenges associated with testing and falsifying the Janzen-Connell hypothesis, a review and critique[M]//Carson W P, Stefan A S. Tropical forest community ecology. Chichester: Wiley-Blackwell, 2008: 210−241.
    [26]
    Yan Y, Zhang C, Wang Y, et al. Drivers of seedling survival in a temperate forest and their relative importance at three stages of succession[J]. Ecology and Evolution, 2015, 5(19): 4287−4299. doi: 10.1002/ece3.2015.5.issue-19
    [27]
    Bachelot B, Uriarte M, McGuire K L, et al. Arbuscular mycorrhizal fungal diversity and natural enemies promote coexistence of tropical tree species[J]. Ecology, 2017, 98(3): 712−720. doi: 10.1002/ecy.1683
  • Related Articles

    [1]Zhang Ping, Li Chaoyang, Zhao Qingquan, Wang Lihai, Ma Ling. Inhibition effects of biocontrol bacteria strains on the pathogen of Camellia oleifera anthracnose[J]. Journal of Beijing Forestry University, 2020, 42(10): 107-116. DOI: 10.12171/j.1000-1522.20190409
    [2]Wang Fei, Man Xiuling, Duan Beixing. Characteristics of soil nitrogen mineralization in the main forest types in cold temperate zone during the spring freezing-thawing period[J]. Journal of Beijing Forestry University, 2020, 42(3): 14-23. DOI: 10.12171/j.1000-1522.20190359
    [3]Xiao Ruihan, Man Xiuling, Ding Lingzhi. Effects of slope position on soil microbial biomass carbon and nitrogen in natural Pinus sylvestris var. mongolia forest in the cold temperature zone[J]. Journal of Beijing Forestry University, 2020, 42(2): 31-39. DOI: 10.12171/j.1000-1522.20190309
    [4]Wu Di, Cui Xiaoyang, Guo Yafen. Characteristics of nitrogen mineralization in soils under different forest types in cold-temperate forest region[J]. Journal of Beijing Forestry University, 2019, 41(9): 122-129. DOI: 10.13332/j.1000-1522.20180276
    [5]GAN Lu, SU Hao-tian, LING Xin-wen, YIN Shu-xia. Rust pathogen identification and mechanism of disease-resistance research on Kentucky bluegrass dwarf mutant[J]. Journal of Beijing Forestry University, 2017, 39(3): 87-92. DOI: 10.13332/j.1000-1522.20160315
    [6]XU Ke, WANG Chun-mei, ZHANG Yi, YANG Xin-tong, HAN Jin-feng, GUI Rong-rong. Effects of different nitrogen addition forms and levels on N2O emission in the temperate forest soil[J]. Journal of Beijing Forestry University, 2017, 39(3): 74-80. DOI: 10.13332/j.1000-1522.20160103
    [7]ZHANG Zhu, WANG Chuan-kuan.. Temporal dynamics and vertical distribution of dissolved organic carbon in snowmelt runoff in a temperate deciduous forest in Maoershan region, northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(11): 1-8. DOI: 10.13332/j.1000-1522.20160114
    [8]LIU Bo-qi, MOU Chang-cheng, XING Ya-juan, HAN Shi-jie, JIANG Si-ling, WANG Qing-gui. Effect of strong rainfalls on soil respiration in a typical temperate forest in Lesser Xing’an Mountains,northeast China[J]. Journal of Beijing Forestry University, 2016, 38(4): 77-85. DOI: 10.13332/j.1000-1522.20150431
    [9]LOU Xin, GU Yan, ZHANG Jun-hui, HAN Shi-jie. Effects of snow cover and freeze-thaw cycles on stability of surface soil aggregates in forest[J]. Journal of Beijing Forestry University, 2016, 38(4): 63-70. DOI: 10.13332/j.1000-1522.20150435
    [10]CHEN Li-xin, JIANG Yi, BU Fan, DUAN Wen-biao, MA Hai-juan. Effects of organic acid on organic phosphorus and mineralization of typical temperate forest soils[J]. Journal of Beijing Forestry University, 2014, 36(3): 75-82. DOI: 10.13332/j.cnki.jbfu.2014.03.011
  • Cited by

    Periodical cited type(15)

    1. 周双云,徐誉远,莫罗坚,黄久香,王本洋. 基于Landsat 8和Sentinel-1的广东青云山自然保护区森林生物量反演. 西北林学院学报. 2024(04): 224-231 .
    2. 陈永富,陈巧,刘华. 基于遥感图像的林况因子提取研究进展. 世界林业研究. 2022(02): 53-58 .
    3. 刘晓双,李才文,赵义兵. 基于高空间分辨率时间序列影像的对象级侵占林地图斑快速检测. 北京林业大学学报. 2022(11): 60-69 . 本站查看
    4. 黄翀,张晨晨,刘庆生,李贺,杨晓梅,刘高焕. 结合光学与雷达影像多特征的热带典型人工林树种精细识别. 林业科学. 2021(07): 80-91 .
    5. 王熊,胡兵,韩泽民,菅永峰,梁杰,周欢,周靖靖,佃袁勇. 基于GF-2号影像的森林优势树种分类. 湖北林业科技. 2020(01): 1-7+76 .
    6. 白莹,胡淑萍. 基于CART决策树的自然保护区植被类型分布研究. 北京林业大学学报. 2020(06): 113-122 . 本站查看
    7. 张阳,屠乃美,陈舜尧,谢会雅,傅雪平,邓浏平. 基于Sentinel-2A数据的县域烤烟种植面积提取分析. 烟草科技. 2020(11): 15-22 .
    8. 马有国,杜学惠. 森林健康评价的遥感技术研究. 森林工程. 2019(02): 37-44 .
    9. 孔嘉鑫,张昭臣,张健. 基于多源遥感数据的植物物种分类与识别:研究进展与展望. 生物多样性. 2019(07): 796-812 .
    10. 徐辉,潘萍,杨武,欧阳勋志,宁金魁,邵锦锋,李琦. 基于多源遥感影像的森林资源分类及精度评价. 江西农业大学学报. 2019(04): 751-760 .
    11. 赵颖慧,张大力,甄贞. 基于非参数分类算法和多源遥感数据的单木树种分类. 南京林业大学学报(自然科学版). 2019(05): 103-112 .
    12. 林丽丽,郝振帮,戴姗霖,杨柳青,刘健,余坤勇. 南方集体林区典型毛竹经营区林分质量遥感量化研究. 林业资源管理. 2019(06): 84-90 .
    13. 朱济友,徐程扬,吴鞠. 基于eCognition植物叶片气孔密度及气孔面积快速测算方法. 北京林业大学学报. 2018(05): 37-45 . 本站查看
    14. 林志玮,丁启禄,涂伟豪,林金石,刘金福,黄炎和. 基于多元HoG及无人机航拍图像的植被类型识别. 森林与环境学报. 2018(04): 444-450 .
    15. 汪红,马云强,石雷. 基于高分二号的云南松林遥感影像提取方法研究. 云南地理环境研究. 2017(02): 57-63+77+2+79-80 .

    Other cited types(17)

Catalog

    Article views (1572) PDF downloads (84) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return