• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Meng, Guo Ye, Liu Songshan, Pang Xiaoming, Li Yingyue. Physiological characteristics and transcriptomics analysis in diploid Ziziphus jujuba Mill. var. spinosa and its autotetraploid[J]. Journal of Beijing Forestry University, 2019, 41(7): 57-67. DOI: 10.13332/j.1000-1522.20190118
Citation: Li Meng, Guo Ye, Liu Songshan, Pang Xiaoming, Li Yingyue. Physiological characteristics and transcriptomics analysis in diploid Ziziphus jujuba Mill. var. spinosa and its autotetraploid[J]. Journal of Beijing Forestry University, 2019, 41(7): 57-67. DOI: 10.13332/j.1000-1522.20190118

Physiological characteristics and transcriptomics analysis in diploid Ziziphus jujuba Mill. var. spinosa and its autotetraploid

More Information
  • Received Date: March 03, 2019
  • Revised Date: June 02, 2019
  • Available Online: July 01, 2019
  • Published Date: June 30, 2019
  • ObjectiveThis study helped elucidate the molecular mechanism of polyploid phenotypic variation in sour jujube which can provide a reference for further study on jujube polyploidy traits, cloning of key regulatory genes and genetic engineering breeding.
    MethodIn this study, Ziziphus jujuba Mill. var. spinosa and its autotetraploid were used as materials to compare the content of leaf relative water, chlorophyll, soluble sugar and soluble protein. The RNA-sequencing of these two materials was carried out. Functional classification and enrichment analysis of differentially expressed genes and transcription factors were performed by reference to GO Ontology, KEGG and others databases.
    ResultThe chlorophyll content, soluble sugar content and soluble protein content in the autotetraploid were significantly higher than that in diploid. However, there was no obvious difference of the leaf relative water content between these two materials. There were 1 329 differentially expressed genes between diploid and its autotetraploid jujube. GO functional analysis indicated that these different genes were mainly involved in growth and stress tolerance. KEGG pathway analysis showed that the most of different genes were enriched in carbohydrate metabolism, amino acid metabolism and signal transduction process. Sixteen key genes such as SPS2, GAE6 and PGDH3 involving in the metabolism and transport of sugar and amino acids, exhibited higher expression level in the autotetraploid than that in diploid; 23 genes were involved in the plant hormone signaling pathway, in which genes related to auxin conduction and responses such as ARG7, GH3.6 and IAA26 were expressed highly in the autotetraploid plants, while genes related to brassinolide synthesis and ethylene-insensitive proteins showed lower expression level in the autotetraploid than that in diploid. In the analysis of different transcription factors, we found that the expression level of MYB transcription factor family genes was higher in the autotetraploid than that in diploid.
    ConclusionHigh chlorophyll content resulted in darker leaves in the autotetraploid. High content of soluble sugar and soluble protein content provided more energy substances for autotetraploid to grow large leaves and thick stem. Many important genes encoding sugar and amino acids metabolism and plant hormone synthesis and signal transduction, were differentially expressed in diploid and its autotetraploid. This result may explain the traits of high energy content and strong growth potential of the autotetraploid plants. The highly expressed genes involved in osmotic adjustment in the autotetraploid suggest that the autotetraploid may be superior resistance than that of diploid. Further analysis of different transcription factors shows that the differential expression of MYB transcription factors between diploid and autotetraploid might lead to differences of plant growth and development, morphogenesis and stress resistance, but the specific performance in these materials need to be further investigated by experiments.
  • [1]
    Keith L A, Jonathan F W. Polyploidy and genome evolution in plants[J]. Current Opinion in Plant Biology, 2005, 8(2): 135−141. doi: 10.1016/j.pbi.2005.01.001
    [2]
    Leitch A R, Leitch I J. Genomic plasticity and the diversity of polyploid plants[J]. Science, 2008, 320: 481−483. doi: 10.1126/science.1153585
    [3]
    Sattler M C, Carvalho C R, Clarindo W R. The polyploidy and its key role in plant breeding[J]. Planta, 2016, 243(2): 281−296. doi: 10.1007/s00425-015-2450-x
    [4]
    Song Q, Chen Z J. Epigenetic and developmental regulation in plant polyploids[J]. Current Opinion in Plant Biology, 2015, 24: 101−109. doi: 10.1016/j.pbi.2015.02.007
    [5]
    高鹏, 康向阳, 尹鸿刚. 木本植物多倍体育种研究进展[J]. 河北林业科技, 2008(6):39−42. doi: 10.3969/j.issn.1002-3356.2008.06.014

    Gao P, Kang X Y, Yin H G. Advances in research into polyploidy breeding of woody plants[J]. The Journal of Hebei Forestry Science and Technology, 2008(6): 39−42. doi: 10.3969/j.issn.1002-3356.2008.06.014
    [6]
    Allario T, Brumos J, Colmeneroflores J M, et al. Large changes in anatomy and physiology between diploid rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression[J]. Journal of Experimental Botany, 2011, 62(8): 2507−2519. doi: 10.1093/jxb/erq467
    [7]
    Mouhaya W, Allario T, Brumos J, et al. Sensitivity to high salinity in tetraploid citrus seedlings increases with water availability and correlates with expression of candidate genes[J]. Functional Plant Biology, 2010, 37(7): 674−685. doi: 10.1071/FP10035
    [8]
    张晓申. 四倍体泡桐特性研究[D]. 郑州: 河南农业大学, 2013.

    Zhang X S. Study on predominant characteristics of different species of autotetraploid Paulownia plants[D]. Zhengzhou: Henan Agricultural University, 2013.
    [9]
    温晓敏, 张娜, 月丫, 等. 葡萄多倍体育种成果及影响因素概述[J]. 中外葡萄与葡萄酒, 2017(4):95−99.

    Wen X M, Zhang N, Yue Y, et al. The achievements of grape polyploid breeding and its influencing factors[J]. Sino-Overseas Grapevine & Wine, 2017(4): 95−99.
    [10]
    Ollitrault P, Vanel F, Froelicher Y, et al. Creation of triploid citrus hybrids by electrofusion of haploid and diploid protoplasts[J]. Acta Horticulturae, 2000, 535: 191−197.
    [11]
    康向阳, 朱之悌. 三倍体毛白杨在我国纸浆生产中的地位与作用[J]. 北京林业大学学报, 2002, 24(增刊1):54−59.

    Kang X Y, Zhu Z T. The status and function of triploid Populus in China pulp production[J]. Journal of Beijing Forestry University, 2002, 24(Suppl.1): 54−59.
    [12]
    Li J W, Fan L P, Ding S D, et al. Nutritional composition of five cultivars of chinese jujube[J]. Food Chemistry, 2007, 103(2): 454−460. doi: 10.1016/j.foodchem.2006.08.016
    [13]
    闫春梅, 申连英, 王晓玲, 等. 不同野生酸枣类型主要性状调查研究[J]. 中国果树, 2018(4):42−45, 55.

    Yan C M, Shen L Y, Wang X L, et al. Investigation on main characters of different wild jujube[J]. China Fruits, 2018(4): 42−45, 55.
    [14]
    Wang M, Sun Y. Fruit trees and vegetables for arid and semi-arid areas in north-west China[J]. Journal of Arid Environments, 1986, 11(1): 3−16. doi: 10.1016/S0140-1963(18)31305-3
    [15]
    Gu X F, Yang A F, Meng H, et al. In vitro induction of tetraploid plants from diploid Zizyphus jujuba Mill. cv. Zhanhua[J]. Plant Cell Reports, 2005, 24(11): 671−676. doi: 10.1007/s00299-005-0017-1
    [16]
    刘孟军, 刘平, 蒋洪恩, 等. 四倍体鲜食枣新品种‘辰光’[J]. 园艺学报, 2010, 37(9):1539−1540.

    Liu M J, Liu P, Jang H E, et al. A new tetraploidy table Chinese jujube cultivar ‘Chenguang’[J]. Acta Horticulturae Sinica, 2010, 37(9): 1539−1540.
    [17]
    Cui Y H, Hou L, Li X, et al. In vitro induction of tetraploid Ziziphus jujuba Mill. var. spinosa plants from leaf explants[J]. Plant Cell, Tissue and Organ Culture, 2017, 131(1): 175−182. doi: 10.1007/s11240-017-1274-8
    [18]
    苏兵强. 不同氮磷比及水分添加对刨花楠叶片相对含水量及比叶重的影响[J]. 南方林业科学, 2018, 46(6):7−11, 21.

    Su B Q. Effects of different nitrogen and phosphorus ratio additions and water treatments on leaf relative water content and leaf mass area of Machilus pauhoi[J]. South China Forestry Science, 2018, 46(6): 7−11, 21.
    [19]
    杨秀英, 王书林. 蒽酮−硫酸比色法测定枇杷叶中可溶性多糖的含量[J]. 亚太传统医药, 2008, 4(8):26−27.

    Yang X Y, Wang S L. Determination of soluble polysaccharide in loquat leaf by anthrone-sulfuric acid Colorimetry[J]. Asia-Pacific Traditional Medicine, Asia-Pacific Traditional Medicine, 2008, 4(8): 26−27.
    [20]
    曲春香, 沈颂东, 王雪峰, 等. 用考马斯亮蓝测定植物粗提液中可溶性蛋白质含量方法的研究[J]. 苏州大学学报(自然科学版), 2006, 22(2):82−85. doi: 10.3969/j.issn.1000-2073.2006.02.020

    Qu C X, Shen S D, Wang X F, et al. Method research of measuring soluble protein contents of plants rough extraction using Coomassie brilliant blue[J]. Journal of Suzhou University (Natural Science Edition), 2006, 22(2): 82−85. doi: 10.3969/j.issn.1000-2073.2006.02.020
    [21]
    Cohen H, Fait A, Tel-Zur N. Morphological, cytological and metabolic consequences of autopolyploidization in Hylocereus (Cactaceae) species[J/OL]. BMC Plant Biology, 2013, 13: 173 [2019−02−21]. https://doi.org/10.1186/1471-2229-13-173.
    [22]
    穆怀志. 白桦四倍体的生长生殖特征及基因转录组分析[D]. 哈尔滨: 东北林业大学, 2013.

    Mu H Z. Transcriptomic analysis of growth and reproductive changes in birch (Betula platyphylla) autotetraploids[D]. Harbin: Northeast Forestry University, 2013.
    [23]
    李忠喜. 叶片高粗蛋白刺槐的筛选及耐旱性评价[D]. 郑州: 河南农业大学, 2009.

    Li Z X. Screening and drought-tolerance assessment of Robinia pseudoacacia of high crude-protein leaves[D]. Zhengzhou: Henan Agricultural University, 2009.
    [24]
    周玉丽, 张丛哲, 任士福. 连翘二倍体与四倍体叶片特征比较[J]. 河北林果研究, 2011, 26(1):13−15. doi: 10.3969/j.issn.1007-4961.2011.01.004

    Zhou Y L, Zhang C Z, Ren S F. The leaf characteristic comparison between the diploid plants and the tetraploid plants of Forsythia suspensa[J]. Hebei Journal of Forestry and Orchard Research, 2011, 26(1): 13−15. doi: 10.3969/j.issn.1007-4961.2011.01.004
    [25]
    黄金艳, 付金娥, 覃斯华, 等. 水分胁迫对二、四倍体薄皮甜瓜苗期生理生化特性的影响[J]. 安徽农业科学, 2011, 39(11):6305−6307. doi: 10.3969/j.issn.0517-6611.2011.11.002

    Huang J Y, Fu J E, Qin S H, et al. Effect of water stress on the physiological and biochemical characteristics of diploid and tetraploid pellicle melon[J]. Journal of Anhui Agricultural Sciences, 2011, 39(11): 6305−6307. doi: 10.3969/j.issn.0517-6611.2011.11.002
    [26]
    Balao F, Talavera H S. Phenotypic consequences of polyploidy and genome size at the microevolutionary scale: a multivariate morphological approach[J]. New Phytologist, 2011, 192(1): 256−265. doi: 10.1111/j.1469-8137.2011.03787.x
    [27]
    朱乾浩, 丹尼·卢埃林, 印·威尔逊. 高通量测序技术在多倍体作物基因组学研究中的应用(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4):355−369. doi: 10.3785/j.issn.1008-9209.2014.04.092

    Zhu Q H, Llewellyn D, Wilson Y, et al. Use of next-generation sequencing in genomic studies of polyploid crops: cotton as an example[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(4): 355−369. doi: 10.3785/j.issn.1008-9209.2014.04.092
    [28]
    Cheng S, Huang Z, Li Y, et al. Differential transcriptome analysis between Populus and its synthesized autotriploids driven by second-division restitution[J]. Journal of Integrative Plant Biology, 2015, 57(12): 1031−1045. doi: 10.1111/jipb.12328
    [29]
    Usadel B, Urte S, Michael M, et al. Identification and characterization of a UDP-D-glucuronate 4-epimerase in Arabidopsis[J]. Febs Letters, 2004, 569(1−3): 327−331. doi: 10.1016/j.febslet.2004.06.005
    [30]
    Geigenberger P, Stitt M. Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant tissues[J]. Planta, 1993, 189(3): 329−339. doi: 10.1007/BF00194429
    [31]
    丁菲. 低温胁迫下与茶树糖代谢相关基因的克隆与表达[D]. 合肥: 安徽农业大学, 2012.

    Ding F. Cloning and expressin of genes related to glycometabolism in tea pant (Camellia sinensis (L.) O. Kuntze) under low temperature[D]. Hefei: Anhui Agricultural University, 2012.
    [32]
    Benstein R M, Ludewig K, Wulfert S, et al. Arabidopsis phosphoglycerate dehydrogenase1 of the phosphoserine pathway is essential for development and required for ammonium assimilation and tryptophan biosynthesis[J]. The Plant Cell, 2013, 25(12): 5011−5029. doi: 10.1105/tpc.113.118992
    [33]
    王丽萍, 李志刚, 谭乐和, 等. 植物内源激素研究进展[J]. 安徽农业科学, 2011, 39(4):1912−1914. doi: 10.3969/j.issn.0517-6611.2011.04.010

    Wang L P, Li Z G, Tan L H, et al. Research progress of plant endogenous hormone[J]. Journal of Anhui Agricultural Sciences, 2011, 39(4): 1912−1914. doi: 10.3969/j.issn.0517-6611.2011.04.010
    [34]
    Liao T, Cheng S, Zhu X, et al. Effects of triploid status on growth, photosynthesis, and leaf area in Populus[J]. Trees, 2016, 30(4): 1137−1147. doi: 10.1007/s00468-016-1352-2
    [35]
    Dai F, Wang Z, Luo G, et al. Phenotypic and transcriptomic analyses of autotetraploid and diploid mulberry (Morus alba L.)[J]. Molecular Science, 2015, 16(9): 22938−22956. doi: 10.3390/ijms160922938
    [36]
    Jain M, Kaur N, Tyagi A K, et al. The auxin-responsive GH3 gene family in rice (Oryza sativa)[J]. Functional & Integrative Genomics, 2006, 6(1): 36−46.
    [37]
    Vandenbussche F, Petrasek J, Zadnikova P, et al. The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings[J]. Development, 2010, 137(4): 597−606. doi: 10.1242/dev.040790
    [38]
    Liscum E, Reed J W. Genetics of Aux/IAA and ARF action in plant growth and development[J]. Plant Molecular Biology, 2002, 49(3−4): 387−400.
    [39]
    Yang C J, Zhang C, Lu Y N, et al. The mechanisms of brassinosteroids action: from signal transduction to plant development[J]. Molecular Plant, 2011, 4(4): 588−600. doi: 10.1093/mp/ssr020
    [40]
    Qiao H, Shen Z, Huang S S C, et al. Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas[J]. Science, 2012, 338: 390−393. doi: 10.1126/science.1225974
    [41]
    刘长英, 吕蕊花, 朱攀攀, 等. 桑树EIN2基因的分离与表达[J]. 作物学报, 2014, 40(7):1205−1212.

    Liu C Y, Lü R H, Zhu P P, et al. Isolation and expression of Mulberry (Morus alba L.) EIN2 gene[J]. Acta Agronomica Sinica, 2014, 40(7): 1205−1212.
    [42]
    Singh K B. Transcription factors in plant defense and stress responses[J]. Current Opinion in Plant Biology, 2002, 5(5): 430−436. doi: 10.1016/S1369-5266(02)00289-3
    [43]
    Fasani E, Dalcorso G, Costa A, et al. The Arabidopsis thaliana, transcription factor MYB59 regulates calcium signalling during plant growth and stress response[J]. Plant Molecular Biology, 2019, 99(6): 517−534. doi: 10.1007/s11103-019-00833-x
    [44]
    Zhou H, Lin-Wang K, Wang F, et al. Activator-type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation[J]. New Phytologist, 2019, 221(4): 1919−1934. doi: 10.1111/nph.2019.221.issue-4
    [45]
    Xing C H, Liu Y, Zhao L Y, et al. A novel MYB transcription factor regulates ascorbic acid synthesis and affects cold tolerance[J]. Plant, Cell & Environment, 2019, 42(3): 832−845.
    [46]
    陆倍倍. 四倍体菘蓝中优良品质相关基因的克隆及研究[D]. 上海: 第二军医大学, 2006.

    Lu B B. Molecular cloning and characterization of important genes related to fine quality of tetraploid Isatis indigotica[D]. Shanghai: The Second Military Medical University, 2006.
  • Related Articles

    [1]Zhou Dezhi, Guan Yinghui, Zhang Bingbin, Chen Rong, Wang Xiuru. Spatial-temporal evolution of habitat quality in northern Shaanxi Province of northwestern China based on land use change and its driving factors[J]. Journal of Beijing Forestry University, 2022, 44(6): 85-95. DOI: 10.12171/j.1000-1522.20210437
    [2]Wang Meng, Ti Yang, Wang Jiadong, Zhao Qiulu, Hu Zhiliang, Luan Xiaofeng. Ecosystem services, trade-offs and synergy analysis in Tianjin under different land use scenarios[J]. Journal of Beijing Forestry University, 2022, 44(5): 77-85. DOI: 10.12171/j.1000-1522.20210008
    [3]Zhao Xin, Zhang Jie, Zhong Lindong. Evaluation and analysis on ecosystem service value of Fenglin National Nature Reserve in Heilongjiang Province of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(7): 100-110. DOI: 10.12171/j.1000-1522.20210041
    [4]Shao Ming, Dong Yuxiang, Lin Chensong. Spatio-temporal evolution and driving factors of ecosystem services in Chengdu-Chongqing urban agglomeration of southwestern China based on GWR model[J]. Journal of Beijing Forestry University, 2020, 42(11): 118-129. DOI: 10.12171/j.1000-1522.20200217
    [5]Liu Xiao, Zhang Xuexia, Xu Xinliang, Chen Dechao. Impacts of land use change on ecosystem service value in Bashang Area of Hebei Province, northern China[J]. Journal of Beijing Forestry University, 2019, 41(8): 94-104. DOI: 10.13332/j.1000-1522.20180244
    [6]ZHANG Ting, SHI Hao, XU Yan-nan, XUE Jian-hui, CHU Jun, GENG Qing-hong. Quantitative evaluation on the impact of the Sloping Land Conversion Program on landscape pattern of land use in Karst area[J]. Journal of Beijing Forestry University, 2015, 37(3): 34-43. DOI: 10.13332/j.1000-1522.20140312
    [7]LI Yi-qiu, , FENG Zhong-ke, Ma Jun-ji. Structure and form evolution of urban land use and its driving factors in Mianyang City, southwest China.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 238-243.
    [8]WANG Jia, , XIONG Ni-na, DONG Bin, YAN Xiu-jing, SUI Hong-da, FENG Zhong-ke. Land-use and landscape pattern changes in Beijing in recent 20 years based on remote sensing.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 83-88.
    [9]WANG Sheng-ping, ZHANG Zhi-qiang, SUN Ge, ZHANG Man-liang, YU Xin-xiao. Effects of land use change on hydrological dynamics at watershed scale in the Loess Plateau-A case study in the Lüergou watershed, Gansu Province[J]. Journal of Beijing Forestry University, 2006, 28(1): 48-54.
    [10]WANG Xiao-dan, CHEN Bin-ru, GAO Pan, CHENG Gen-wei. Changes of land use and landscape patterns of the Gongga Mountain area on the eastern edge of Qinghai-Tibetan Plateau[J]. Journal of Beijing Forestry University, 2005, 27(3): 40-45.
  • Cited by

    Periodical cited type(6)

    1. 林鸿裕,卢桂宁. 基于模糊逻辑综合评判的垃圾处理厂选址仿真. 计算机仿真. 2024(01): 513-517 .
    2. 刘子晴,葛韵宇. 北京第二道绿化隔离地区空间潜力分析及郊野公园选址研究. 北京规划建设. 2024(01): 40-45 .
    3. 黄友慧,辛儒鸿,李凯. 红枫湖镇生态环境质量评价及修复优先区识别研究. 西南林业大学学报(自然科学). 2024(04): 64-72 .
    4. 王菲,孙晨,姜雁林,马晓燕,冯丽. 北京市第二道绿化隔离带地区生态敏感性评价. 北京农学院学报. 2023(02): 105-110 .
    5. 刘烨琪. 基于情景规划的杭州郊野公园选址研究. 现代园艺. 2023(19): 99-102 .
    6. 葛韵宇,李雄. 基于碳汇和游憩服务协同提升的北京市第二道绿化隔离地区郊野公园环空间布局优化. 北京林业大学学报. 2022(10): 142-154 . 本站查看

    Other cited types(8)

Catalog

    Article views (2752) PDF downloads (81) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return