高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高光谱遥感的油松毛虫危害程度监测模型

白雪琪 张晓丽 张连生 马云波

白雪琪, 张晓丽, 张, 凝, 张连生, 马云波. 基于高光谱遥感的油松毛虫危害程度监测模型[J]. 北京林业大学学报, 2016, 38(11): 16-22. doi: 10.13332/j.1000-1522.20160139
引用本文: 白雪琪, 张晓丽, 张, 凝, 张连生, 马云波. 基于高光谱遥感的油松毛虫危害程度监测模型[J]. 北京林业大学学报, 2016, 38(11): 16-22. doi: 10.13332/j.1000-1522.20160139
BAI Xue-qi, ZHANG Xiao-li, ZHANG Ning, ZHANG Lian-sheng, MA Yun-bo, .. Monitoring model of dendrolimus tabulaeformis disaster using hyperspectral remote sensing technology.[J]. Journal of Beijing Forestry University, 2016, 38(11): 16-22. doi: 10.13332/j.1000-1522.20160139
Citation: BAI Xue-qi, ZHANG Xiao-li, ZHANG Ning, ZHANG Lian-sheng, MA Yun-bo, .. Monitoring model of dendrolimus tabulaeformis disaster using hyperspectral remote sensing technology.[J]. Journal of Beijing Forestry University, 2016, 38(11): 16-22. doi: 10.13332/j.1000-1522.20160139

基于高光谱遥感的油松毛虫危害程度监测模型

doi: 10.13332/j.1000-1522.20160139
基金项目: 

林业公益性行业科研专项(201404401)。

详细信息
    作者简介:

    白雪琪。主要研究方向:林业遥感。Email: xueqiweb@163.com 地址:100083北京市海淀区清华东路35号北京林业大学林学院。   责任作者: 张晓丽,教授,博士生导师。主要研究方向:林业遥感和地理信息系统。Email: zhang-xl@263.net 地址:同上。

    白雪琪。主要研究方向:林业遥感。Email: xueqiweb@163.com 地址:100083北京市海淀区清华东路35号北京林业大学林学院。   责任作者: 张晓丽,教授,博士生导师。主要研究方向:林业遥感和地理信息系统。Email: zhang-xl@263.net 地址:同上。

    白雪琪。主要研究方向:林业遥感。Email: xueqiweb@163.com 地址:100083北京市海淀区清华东路35号北京林业大学林学院。   责任作者: 张晓丽,教授,博士生导师。主要研究方向:林业遥感和地理信息系统。Email: zhang-xl@263.net 地址:同上。

Monitoring model of dendrolimus tabulaeformis disaster using hyperspectral remote sensing technology.

  • 摘要: 油松毛虫对人工油松林造成了严重的危害。据统计,辽宁省油松毛虫的发生面积为12万hm2/a,年均直接经济损失340万元。利用遥感技术特别是高光谱遥感大面积及时监测病虫害是今后林业病虫害监测的发展方向之一。高光谱遥感技术可以为植物叶绿素和含水率等生物化学参数的定量化诊断提供简便、有效以及非破坏性的数据采集和处理方法。本研究采用野外便携式光谱仪测定不同失叶率油松的高光谱反射率数据,使用分光光度计室内测定相应叶片的叶绿素含量,采用烘干法测定叶片含水率。通过计算归一化光谱指数(NDSI)、比值光谱指数(RSI)、差值光谱指数(DSI)与叶绿素a含量、叶绿素b含量、含水率的相关系数,选择相关系数最高的光谱指数作为核心光谱指数。以核心光谱指数为自变量,失叶率为因变量建立回归模型,采用逐步回归法进行变量筛选,筛选出包含DSI(808,816)、RSI(482,494)、NDSI(881,920)、NDSI(907,919)的光谱指数集作为最佳回归模型的自变量,应用R语言的函数lm()获得最佳回归模型y=1.781 8-3.172 4×NDSI(808,816)-0.960 6×RSI(482,494)-2.196 7×NDSI(881,920)-1.241 9×NDSI(907,919),R2为0.786。模型检验结果显示,最佳回归模型的均方根误差(RMSE)为0.089,相对误差(RE)为11.7%,预测效果良好,表明该模型可用于估算油松失叶程度,有助于对油松的受害情况做出综合分析,提高油松毛虫灾害监测的精度,克服了使用单一叶绿素指标或含水率指标的片面性和局限性。

     

  • [1]
    [1] 金震宇, 田庆久, 惠凤鸣, 等. 水稻叶绿素浓度与光谱反射率关系研究[J].遥感技术与应用, 2003, 18(3): 134-137.
    [2] JIN Z Y, TIAN Q J, HUI F M , et al .Study of the relationship between rice chlorophyll concentration and rice reflectance[J].Remote Sensing Technology and Application, 2003, 18(3): 134-137.
    [2] GUIZAR M, THURMAN S T, FIENUP J R. Efficient subpixel image registration algorithms[J]. Optics Letters, 2008, 33(2): 156-158.
    [3] SOUMMER R, PUEYO L, SIVARAMAKRISHNAN A, et al. Fast computation of Lyot-style coronagraph propagation [J]. Optics Express, 2007, 15(24): 15935-15951.
    [3] FANG H, SONG H Y, CAO F, et al. Study on the relationship between spectral properties of oilseed rape leaves and their chlorophyll content[J]. Spectroscopy and Spectral Analysis, 2007, 27(9): 1731-1734.
    [4] 方慧, 宋海燕, 曹芳, 等. 油菜叶片的光谱特征与叶绿素含量之间的关系研究[J]. 光谱学与光谱分析, 2007, 27(9): 1731-1734.
    [4] PU R L, GONG P. Hyperspectral remote sensing[M]. Beijing:Higher Education Press,2000.
    [5] GONG Z N, ZHAO Y L, ZHAO W J, et al. Estimation model for plant leaf chlorophyll content based on the spectral index content[J]. Acta Ecologica Sinica, 2014, 34(20): 5736-5745.
    [5] 浦瑞良, 宫鹏. 高光谱遥感及其应用[M].北京:高等教育出版社, 2000.
    [6] DU H Q, GE H L, FAN W Y, et al. Study on relationships between total chlorophyll with hyperspectral features for leaves of Pinus massoniana forest[J]. Spectroscopy and Spectral Analysis, 2009, 29(11): 3033-3037.
    [6] 宫兆宁, 赵雅莉, 赵文吉, 等. 基于光谱指数的植物叶片叶绿素含量的估算模型[J]. 生态学报, 2014, 34(20): 5736-5745.
    [7] HORLER D N H, DOCKRAY M, BARBER J. The red edge of plant leaf reflectance[J]. International Journal of Remote Sensing, 1983, 4(2): 273-288.
    [7] WU C Y, NIU Z. Improvement in linearity between hyperspectral vegetation indices and chlorophyll content, leaf area index based on radiative transfer models[J]. Chinese Bulletin of Botany, 2008, 25(6): 714-721.
    [8] 杜华强, 葛宏立, 范文义, 等. 马尾松针叶光谱特征与其叶绿素含量间关系研究[J].光谱学与光谱分析, 2009,29 (11): 3033-3037.
    [8] LI Y D, DU H Q, ZHOU G M, et al. Chlorophyll content in Phyllostachys violascens related to hyper-spectral vegetation indices and development of an inversion model[J]. Journal of Zhejiang A&F University, 2015, 32(3): 335-345.
    [9] JIANG J B, HUANG W J, CHEN Y H. Using canopy hyperspectral ratio index to retrieve relative water content of wheat under yellow rust stress[J]. Spectroscopy and Spectral Analysis, 2010, 30(7): 1939-1943.
    [9] SIMS D A, GAMON J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing of Environment, 2002, 81(2): 337-354.
    [10] 吴朝阳, 牛铮. 基于辐射传输模型的高光谱植被指数与叶绿素浓度及叶面积指数的线性关系改进[J]. 植物学通报, 2008, 25(6): 714-721.
    [10] WANG J, XU R S, MA Y L, et al. Methods and research developments for retrival of vegetable water content by remote sensing [J]. Remote Sensing Information, 2008 (1): 100-105.
    [11] PAN P F, YANG W N, JIAN J, et al. Remote sensing retrieval model of vegetation moisture content based on spectral index: a case study in Maoergai of Minjiang River' upstream [J]. Remote Sensing Information, 2013(3): 69-73.
    [11] 李亚丹, 杜华强, 周国模, 等. 雷竹叶绿素与高光谱植被指数关系及其反演模型[J]. 浙江农林大学学报, 2015, 32(3): 335-345.
    [12] 蒋金豹, 黄文江, 陈云浩. 用冠层光谱比值指数反演条锈病胁迫下的小麦含水量[J].光谱学与光谱分析, 2010, 30(7): 1939-1943.
    [12] WANG P L, ZHANG J M, ZHANG C M, et al. The relationships between spectral features and water content of the dominant plant species in the Tengger Desert[J]. Journal of Desert Research, 2013, 33(3): 737-742.
    [13] LI K, YANG H L. A study on several factors of photosynthesis of Chinese pine damaged by pine caterpillar[J]. Journal of Beijing Forestry University, 1997, 19(1): 58-62.
    [13] 王洁,徐瑞松,马跃良,等. 植被含水量的遥感反演方法及研究进展[J]. 遥感信息, 2008 (1): 100-105.
    [14] XU Z C, LI K. Compensative merchanism of Chinese pine damaged by pine caterpillars [J].Journal of Beijing Forestry University,1996, 18(1): 61-65.
    [14] 潘佩芬, 杨武年, 简季, 等. 基于光谱指数的植被含水率遥感反演模型研究:以岷江上游毛尔盖地区为例[J]. 遥感信息, 2013(3): 69-73.
    [15] 王鹏龙, 张建明, 张春梅, 等. 腾格里沙漠典型植物含水率与地物光谱的关系分析[J]. 中国沙漠, 2013, 33(3): 737-742.
    [15] DONG H D. The regionalization study on vegetation of Liaoning[M]. Shenyang:Liaoning University Publishing, 2011.
    [16] WANG B H. Multivariate statistical analysis and modeling for R language[M].Guangzhou:Jinan University Press, 2010.
    [16] 李凯, 杨辉来. 松毛虫危害对油松光合作用几个因子的影响[J]. 北京林业大学学报, 1997, 19(1): 58-62.
    [17] 许志春, 李凯. 油松对松毛虫危害的补偿机制研究[J]. 北京林业大学学报, 1996, 18(1): 61-65.
    [17] HUANG M Y, WANG J H, HUANG W J, et al. Hyperspectral character of stripe rust on winter wheat and monitoring by remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(6): 154-158.
    [18] 董厚德. 辽宁植被与植被区划[M]. 沈阳:辽宁大学出版社, 2011.
    [19] 王斌会. 多元统计分析及 R 语言建模[M]. 广州:暨南大学出版社, 2010.
    [20] YANG C M, CHENG C H, CHEN R K. Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder[J]. Crop Science, 2007, 47(1): 329-335.
    [21] LIU Z Y, WU H F, HUANG J F. Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis[J]. Computers and Electronics in Agriculture, 2010, 72(2): 99-106.
    [22] 黄木易, 王纪华, 黄文江, 等. 冬小麦条锈病的光谱特征及遥感监测[J]. 农业工程学报, 2003, 19(6): 154-158.
  • 加载中
计量
  • 文章访问数:  1735
  • HTML全文浏览量:  129
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-25
  • 刊出日期:  2016-11-30

目录

    /

    返回文章
    返回